Electrostatic field at the centre of a disk

Click For Summary

Homework Help Overview

The problem involves a thin conducting disc subjected to a time-dependent magnetic field, with the goal of finding the electric field at a point within the disc and the induced current density as a function of distance from the axis. The context includes concepts from electromagnetism, specifically Faraday's law and Ohm's law.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss using Faraday's law to find the induced emf and subsequently the electric field and current density. There are considerations about the impact of the disc's geometry on the electric field and whether the induced current can be neglected due to high resistivity. Questions arise about the validity of assumptions regarding the magnetic field and the calculations of resistance and power dissipation.

Discussion Status

Participants have provided various approaches to calculating the electric field and current density, with some suggesting that the shape of the disc simplifies the problem. There is ongoing exploration of the implications of high resistivity and how it affects the magnetic field and induced current. Guidance has been offered regarding the use of differential elements for calculating current density and power, but no consensus has been reached on the final calculations.

Contextual Notes

Participants mention constraints such as the assumption of large resistivity and the need to consider the geometry of the disc when applying equations. There are also references to the difficulty of the problem if resistivity were not large, indicating a level of complexity that may not be suitable for introductory discussions.

Physgeek64
Messages
245
Reaction score
11

Homework Statement


A thin conducting disc has radius a thickness b and electrical resistivity ρ. It is
placed in a uniform time-dependent magnetic induction ##B = B_0 sin ωt## directed parallel
to the axis of the disc. Assuming that ρ is large, find E at a distance r < a from the axis
of the disc, in the plane of the disc, and obtain an expression for the induced current density as a function of r

Homework Equations


Maxwells equations

The Attempt at a Solution


So there are two ways I can think of doing this question. One is to consider the emf induced in the disk using Faradays law ##emf= -{d\phi}/{dt}## and then calculate the associated current using the resistivity, followed by calculating the associated magnetic field. From this I can then calculate the electric field which is produced as a result of this current using ##integral E.ds= -integral {dB}/{dt} .ds## this can then be subtracted from the initial magnetic field to give the resulting.

However, since the resistivity is large, I'm going to assume that this current is essentially negligible. So can I just skip to the point where I can calculate E using ##\integral E.ds= -\integral {dB}/{dt} ds##? My only concern with this, is this electric field is the same regardless of whether the disk is there or not.

Either way, once I have the electric field I can easily calculate the current density. I just can decide which of these methods is more appropriate..

Many thanks

Edit: Really sorry- Don't know how to get the integral sign, nor can I remember where to find how to do it. If you can help me with either of these, that would be much appreciated! :)
 
Physics news on Phys.org
The integral you wrote down is valid whatever the shape is however when you are trying to find the electric field fom that integral equation the shape matters. The disk allows you to conclude that the electric field will be dependent only on radius and the total length element 2*pi*r, so it allaws you to extract E from that equation. After that you can find the current density
 
Guneykan Ozgul said:
The integral you wrote down is valid whatever the shape is however when you are trying to find the electric field fom that integral equation the shape matters. The disk allows you to conclude that the electric field will be dependent only on radius and the total length element 2*pi*r, so it allaws you to extract E from that equation. After that you can find the current density

Should I take into account the induced current though? Many thanks :)
 
While calculating the electric field, the integral you wrote down is enough, after you calculate the electric field you can find the induced current density by J=δE (Ohm's Law).
 
Guneykan Ozgul said:
While calculating the electric field, the integral you wrote down is enough, after you calculate the electric field you can find the induced current density by J=δE (Ohm's Law).

Ah okay. Thank you so much!

Sorry, I should've included this above, but the next part asks for the power dissipated, for which I will need the resistance. So far I have done
considering ## R=rho * l/A## where L and A are the lengths and areas respectively. The area that is perpendicular to the current is given by ##bdr## where dr is the infinitesimal change in radial distance, and ##l=2*pi*r##. so ##R=rho * 2*pi*r/bdr ## ? I don't feel as though this is right?

Many thanks :)
 
Since you can calculate the potential difference(emf), you can calculate the power with VI instead of going into resistance.
 
It is correct for the OP to consider including the mag field introduced by the current, but it is also correct for the OP to assume that this mag field is negligible since ρ is large.

So Faraday works nicely: contour∫E(r)⋅ds = -∂Φ(r)/∂t = emf.

If ρ were not large the problem would be prohibitively difficult for an introductory course, since the inductance of the disk would have to be considered which is next to impossible to compute even with advanced math & special functions (elliptic integrals).

To get current density think of a differentially thin annulus within the disc, of width dr and thickness b, and compute the differential current di. I suggest using conductivity and conductance rather than resistivity and resistance in the calculations. If you post your result we can compare.
 
rude man said:
It is correct for the OP to consider including the mag field introduced by the current, but it is also correct for the OP to assume that this mag field is negligible since ρ is large.

So Faraday works nicely: contour∫E(r)⋅ds = -∂Φ(r)/∂t = emf.

If ρ were not large the problem would be prohibitively difficult for an introductory course, since the inductance of the disk would have to be considered which is next to impossible to compute even with advanced math & special functions (elliptic integrals).

To get current density think of a differentially thin annulus within the disc, of width dr and thickness b, and compute the differential current di. I suggest using conductivity and conductance rather than resistivity and resistance in the calculations. If you post your result we can compare.

I got the electric field to be ##E=\frac{B_0 \omega}{2 \pi r} cos( \omega t)##
and the Current density to be ##E=\frac{B_0 \omega}{2 \pi r \rho} cos( \omega t)##

However, I'm struggling to find the power dissipated. Many thanks
 
Physgeek64 said:
I got the electric field to be ##E=\frac{B_0 \omega}{2 \pi r} cos( \omega t)##
Uh oh. The E field goes to infinity at r = 0?
I think you forgot to include the area in Φ?
BTW your dimensions are also wrong. Always do a dimension check of all terms in an equation. It's the most powerful checking method there is!
 
Last edited:
  • #10
rude man said:
Uh oh. The E field goes to infinity at r = 0?
I think you forgot to include the area in Φ?
BTW your dimensions are also wrong. Always do a dimension check of all terms in an equation. It's the most powerful checking method there is!
My mistake!

I should have got
##E=\frac{- B_0 \omega r}{2 } cos( \omega t)## (I think this is dimensionally correct)
##J=\frac{- B_0 \omega r}{2 \rho} cos( \omega t)## ?
 
  • #11
Physgeek64 said:
My mistake!

I should have got
##E=\frac{- B_0 \omega r}{2 } cos( \omega t)## (I think this is dimensionally correct)
##J=\frac{- B_0 \omega r}{2 \rho} cos( \omega t)## ?
All correct! Good going.
 
  • #12
rude man said:
All correct! Good going.

Thank you for your help! Is there any chance you can also help me find the power dissipated?
 
  • #13
Physgeek64 said:
Don't know how to get the integral sign, nor can I remember where to find how to do it. If you can help me with either of these, that would be much appreciated!
\int is the magic incantation. See e.g. http://reu.dimacs.rutgers.edu/Symbols.pdf
 
  • #14
Physgeek64 said:
Thank you for your help! Is there any chance you can also help me find the power dissipated?
Well, you now know the current density so you can compute the differential power in a thin annulus of radius r and cross-section b dr, then you can sum the differential power over the radius of the disc.
 
  • #15
rude man said:
Well, you now know the current density so you can compute the differential power in a thin annulus of radius r and cross-section b dr, then you can sum the differential power over the radius of the disc.

I'm afraid I don't know how to compute the differential power in a thin annulus
 
  • #16
Physgeek64 said:
I'm afraid I don't know how to compute the differential power in a thin annulus
The length is 2 pi r, the thickness is b, the width is dr, the current density you know. Surely you can compute power from V^2/R.
 

Similar threads

Replies
1
Views
860
Replies
9
Views
1K
Replies
11
Views
2K
Replies
4
Views
4K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
8
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K