Electrostatic vs DC Conduction Simulations for E-field Analysis

AI Thread Summary
Electrostatic and DC conduction simulations are both viable for e-field analysis, as their underlying mathematics is similar. Electrostatic simulations are best used when fields are static, while DC conduction is suited for scenarios involving current flow. Changes in dielectric constant impact electrostatic field gradients, whereas conductivity variations affect DC conduction gradients. The choice between the two methods depends on the specific conditions of the simulation. A more detailed question would lead to a more tailored response.
EE4me
Messages
17
Reaction score
1
TL;DR Summary
When is it appropriate/inappropriate to use electrostatic and dc conduction simulations for e-field analysis
Hi,

I am doing e-field simulations and have came across two types; electrostatic and dc conduction. I know that electrostatic means there is no changing field so I'm just hoping for discussion on when one is more appropriate than the other and when one definitely should or should not be used.
 
Engineering news on Phys.org
Welcome to PF.
You can use either method for simple field analysis between boundaries because the mathematics is the same for both. One can be adapted to be the analog of the other.
With electrostatic field mapping, changes in dielectric constant will affect the field gradient.
With DC current field mapping, changes in conductivity will affect the field gradient.
For a more specific answer we need a more specific question.
Are you using a physical model or a computer algorithm ?
 
Thread 'Weird near-field phenomenon I get in my EM simulation'
I recently made a basic simulation of wire antennas and I am not sure if the near field in my simulation is modeled correctly. One of the things that worry me is the fact that sometimes I see in my simulation "movements" in the near field that seems to be faster than the speed of wave propagation I defined (the speed of light in the simulation). Specifically I see "nodes" of low amplitude in the E field that are quickly "emitted" from the antenna and then slow down as they approach the far...
Hello dear reader, a brief introduction: Some 4 years ago someone started developing health related issues, apparently due to exposure to RF & ELF related frequencies and/or fields (Magnetic). This is currently becoming known as EHS. (Electromagnetic hypersensitivity is a claimed sensitivity to electromagnetic fields, to which adverse symptoms are attributed.) She experiences a deep burning sensation throughout her entire body, leaving her in pain and exhausted after a pulse has occurred...
Back
Top