What Is the Ratio of the New Separation Distance to the Initial Separation?

Click For Summary
SUMMARY

The forum discussion centers on calculating the ratio of the new separation distance, ##r_2##, to the initial separation distance, ##r_1##, for two point charges, ##q_1 = 26~\mu C## and ##q_2 = 47~\mu C##, with initial and final forces of ##F_1=5.70~N## and ##F_2=0.57~N##, respectively. The derived ratio is ##r_2 = 10r_1##, indicating that the new separation distance is ten times the initial distance. The calculations utilize Coulomb's law, represented by the equation ##F=K \cdot \frac {q_1 \cdot q_2} {r^2}##, where ##K \approx 8.99×10^9##. The final values for the distances are ##r_1=1.39~m## and ##r_2=4.39~m##, confirming the inverse square relationship of electrostatic forces.

PREREQUISITES
  • Understanding of Coulomb's law and electrostatic force calculations
  • Ability to manipulate algebraic equations and square roots
  • Familiarity with the concept of inverse square laws in physics
  • Basic knowledge of units in electrostatics (Coulombs, Newtons, meters)
NEXT STEPS
  • Study the implications of Coulomb's law in different charge configurations
  • Learn about the concept of electric field strength and its relation to force
  • Explore the significance of significant figures in scientific calculations
  • Investigate the effects of varying charge magnitudes on electrostatic forces
USEFUL FOR

Students in physics, educators teaching electrostatics, and anyone interested in understanding the principles of electrostatic forces and their calculations.

WhiteWolf98
Messages
89
Reaction score
8

Homework Statement


The magnitude of the electrostatic force between point charges ##q_1 = 26~\mu C## and ##q_2 = 47~\mu C## is initially ##F_1=5.70~N##. The separation distance between the charges, ##r_1## is then changed such that the magnitude of the force is, ##F_2=0.57~N##.

(a) What is the ratio of the new separation distance, ##r_2## to the initial separation, ##r_1##?

(b) What is the new separation distance, ##r_2##?

Homework Equations


##F=K \cdot \frac {q_1 \cdot q_2} {r^2}##, where ##K \approx 8.99×10^9##

The Attempt at a Solution


##5.70=\frac {K|q_1||q_2|} {{r_1}^2}##

##r_1=\sqrt {\frac {K|q_1||q_2|} {5.70}}##

##0.57=\frac {K|q_1||q_2|} {{r_2}^2}##

##r_2=\sqrt {\frac {K|q_1||q_2|} {0.57}}##

What's even the point of the ratio when all elements are present in the formula...?

##\frac {r_2} {r_1}=\frac {\sqrt {\frac {K|q_1||q_2|} {0.57}}} {\sqrt {\frac {K|q_1||q_2|} {5.70}}}##

##\frac {r_2} {r_1}=\frac {(\sqrt {\frac {K|q_1||q_2|} {0.57}})^2} {(\sqrt {\frac {K|q_1||q_2|} {5.70}})^2}##

##\frac {r_2} {r_1}=\frac {\frac {K|q_1||q_2|} {0.57}} {\frac {K|q_1||q_2|} {5.70}}##

##\frac {r_2} {r_1}=\frac {5.70} {0.57}##

##r_2=10r_1##

Working them out individually:

##K\cdot(47×10^{-6})(26×10^{-6})=10.98~ (to~3~s.f.)\gg (B)##

##5.70=\frac {B} {{r_1}^2}##

##r_1= \sqrt {\frac {B} {5.70}}=1.39~m~(to~3~s.f.)##

##r_2= \sqrt {\frac {B} {0.57}}=4.39~m~(to~3~s.f.)##

I'd expect ##r_2## to be larger, since the force is smaller. But it doesn't agree with the ratio... Have I made a wrong assumption or calculation somewhere?
 
Physics news on Phys.org
WhiteWolf98 said:

Homework Statement


The magnitude of the electrostatic force between point charges ##q_1 = 26~\mu C## and ##q_2 = 47~\mu C## is initially ##F_1=5.70~N##. The separation distance between the charges, ##r_1## is then changed such that the magnitude of the force is, ##F_2=0.57~N##.

(a) What is the ratio of the new separation distance, ##r_2## to the initial separation, ##r_1##?

(b) What is the new separation distance, ##r_2##?

Homework Equations


##F=K \cdot \frac {q_1 \cdot q_2} {r^2}##, where ##K \approx 8.99×10^9##

The Attempt at a Solution


##5.70=\frac {K|q_1||q_2|} {{r_1}^2}##

##r_1=\sqrt {\frac {K|q_1||q_2|} {5.70}}##

##0.57=\frac {K|q_1||q_2|} {{r_2}^2}##

##r_2=\sqrt {\frac {K|q_1||q_2|} {0.57}}##

What's even the point of the ratio when all elements are present in the formula...?

##\frac {r_2} {r_1}=\frac {\sqrt {\frac {K|q_1||q_2|} {0.57}}} {\sqrt {\frac {K|q_1||q_2|} {5.70}}}##

>>
##\frac {r_2} {r_1}=\frac {(\sqrt {\frac {K|q_1||q_2|} {0.57}})^2} {(\sqrt {\frac {K|q_1||q_2|} {5.70}})^2}##

>>

The above step is an error. Did you forget to square the left hand side?

##\frac {r_2} {r_1}=\frac {\frac {K|q_1||q_2|} {0.57}} {\frac {K|q_1||q_2|} {5.70}}##

##\frac {r_2} {r_1}=\frac {5.70} {0.57}##

##r_2=10r_1##

Working them out individually:

##K\cdot(47×10^{-6})(26×10^{-6})=10.98~ (to~3~s.f.)\gg (B)##

##5.70=\frac {B} {{r_1}^2}##

##r_1= \sqrt {\frac {B} {5.70}}=1.39~m~(to~3~s.f.)##

##r_2= \sqrt {\frac {B} {0.57}}=4.39~m~(to~3~s.f.)##

I'd expect ##r_2## to be larger, since the force is smaller. But it doesn't agree with the ratio... Have I made a wrong assumption or calculation somewhere?

See above.
 
  • Like
Likes   Reactions: WhiteWolf98
Ah. I didn't forget, I didn't think you had to. Oops.

Would ##r_2=\sqrt 10 r_1## then?
 
WhiteWolf98 said:
Ah. I didn't forget, I didn't think you had to. Oops.

Would ##r_2=\sqrt 10 r_1## then?

Yes. It's an inverse square law. If the force reduces by a factor the distance increases by the square root of that factor.
 
  • Like
Likes   Reactions: WhiteWolf98
I see. But even using that formula, it doesn't give me the same ##r_2## value
 
WhiteWolf98 said:
I see. But even using that formula, it doesn't give me the same ##r_2## value
It's as close as can be expected after rounding the individual distances to three sig figs.
What are you getting for the ratio? What if you take an extra digit in the rounding?
 
  • Like
Likes   Reactions: WhiteWolf98
Okay, for some reason I did it again, and it worked... either way, not complaining. Thank you both. How silly for it all to be just an algebra mistake in the end
 

Similar threads

Replies
6
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 19 ·
Replies
19
Views
8K
Replies
14
Views
2K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 11 ·
Replies
11
Views
7K
  • · Replies 4 ·
Replies
4
Views
11K