Electrostatics:Longitudinal charge density of conductors

Click For Summary
SUMMARY

The discussion focuses on calculating the longitudinal charge densities of three hollow cylindrical conductors in a vacuum, where the inner and central conductors are charged, and the outer conductor is grounded. Using Gauss's Law, the electric field is expressed as E=Q'/(2πrε0), and the potentials are derived through integration. The longitudinal charge densities for the inner and central conductors are given by Q'=(2πε0Va)/(ln(b/a)+ln(c/b)) and Q'=(2πε0Vb)/(ln(c/b)), respectively, while the grounded outer conductor has a longitudinal charge density of zero, contingent on the potentials Va and Vb.

PREREQUISITES
  • Understanding of Gauss's Law for electric fields
  • Familiarity with electric potential calculations
  • Knowledge of cylindrical coordinate systems in electrostatics
  • Basic algebra for solving equations involving logarithms
NEXT STEPS
  • Study the derivation of electric fields using Gauss's Law in cylindrical coordinates
  • Learn about the implications of grounding conductors in electrostatic problems
  • Explore the concept of linear charge density (λ) and its applications in electrostatics
  • Investigate the effects of multiple charged conductors on electric fields and potentials
USEFUL FOR

Students and professionals in physics, particularly those specializing in electromagnetism, electrical engineers, and anyone involved in electrostatic calculations and applications.

gruba
Messages
203
Reaction score
1

Homework Statement


Three very long (theoretically infinite long) hollow cylindrical conductors, with radius a,b,c (c>b>a) are in vacuum. Inner and central conductor are charged, and outer conductor is grounded. Potentials of inner and central conductors with reference point relative to outer conductor are Va,Vb. Find longitudinal charge density of all three conductors.

Homework Equations


Electric field of cylindrical conductor can be derived using Gauss law for vacuum: E=Q'/(2πrε0), where Q' is longitudinal charge density.
Electric potential of cylindrical conductor is given by: V=∫Edl, where dl represents integration by radius.

The Attempt at a Solution


If outer conductor is grounded, and it is a referent point to potentials Va and Vb, integration for Va will be from (a to b)+(b to c),
Va=(Q'/(2πε0))*(ln(b/a)+ln(c/b))

Integration for Vb will be from (b to c),
Vb=(Q'/(2πε0))*ln(c/b)

We need to find longitudinal charge density for each capacitor, so for first we derive it from Va:
Q'=(2πε0Va)/(ln(b/a)+ln(c/b))

For second conductor, we derive it from Vb:
Q'=(2πε0Vb)/(ln(c/b))

Third conductor is grounded, so the potential of the third conductor is equal to zero, thus the longitudinal charge density of the third conductor is equal to zero.

Could someone check this, and help if something is not correct?
Thanks for replies.
 

Attachments

  • image.PNG
    image.PNG
    5.9 KB · Views: 511
Physics news on Phys.org
Each shell generates a field. At each shell, the potential is the sum of the potentials generated by the three shells at that radius. Start by creating unknowns for the charge densities on each shell.
The grounded shell has a potential of zero, but it must have a charge in order to neutralise the fields generated by the other two.
 
Last edited:
gruba said:

Homework Statement


Three very long (theoretically infinite long) hollow cylindrical conductors, with radius a,b,c (c>b>a) are in vacuum. Inner and central conductor are charged, and outer conductor is grounded. Potentials of inner and central conductors with reference point relative to outer conductor are Va,Vb. Find longitudinal charge density of all three conductors.

Homework Equations


Electric field of cylindrical conductor can be derived using Gauss law for vacuum: E=Q'/(2πrε0), where Q' is longitudinal charge density.
Electric potential of cylindrical conductor is given by: V=∫Edl, where dl represents integration by radius.

The Attempt at a Solution


If outer conductor is grounded, and it is a referent point to potentials Va and Vb, integration for Va will be from (a to b)+(b to c),
Va=(Q'/(2πε0))*(ln(b/a)+ln(c/b))

Integration for Vb will be from (b to c),
Vb=(Q'/(2πε0))*ln(c/b)

We need to find longitudinal charge density for each capacitor, so for first we derive it from Va:
Q'=(2πε0Va)/(ln(b/a)+ln(c/b))

For second conductor, we derive it from Vb:
Q'=(2πε0Vb)/(ln(c/b))

Third conductor is grounded, so the potential of the third conductor is equal to zero, thus the longitudinal charge density of the third conductor is equal to zero.

Could someone check this, and help if something is not correct?
Thanks for replies.
Your basic approach seems fine. You need to be careful of details in solving this problem.

The commonly used symbol for charge per unit length is λ (Greek 'lambda'), which is called longitudinal charge density in your problem statement.

Let λa, λb, and λc be linear charge densities on cylinders of radii a, b, and c respectively.

Your expression for the electric field (coming from Gauss's Law) looks good. ##\displaystyle \ E_r=\frac{\lambda_\text{in}}{2\pi\epsilon_0 r} \ ##

Then use ##\displaystyle \ V_{r_2}-V_{r_1}=-\int_{r_1}^{r_2}E_r\,dr \ .##

I would start with ##\displaystyle \ V_{b}-V_{c} \,,\ ## and proceed on from there.
 
haruspex said:
Each shell generates a field. At each shell, the potential is the sum of the potentials generated by the three shells at that radius. Start by creating unknowns for the charge densities on each shell.
The grounded shell has a potential of zero, but it must have a charge in order to neutralise the fields generated by the other two.

Could you show the expression for longitudinal charge density of grounded conductor and explain if it is not equal to zero? Also, did I derived correctly longitudinal charge densities for first two conductors?
 
Last edited:
gruba said:
Could you show the expression for longitudinal charge density of grounded conductor and explain if it is not equal to zero? Also, did I derived correctly longitudinal charge densities for first two conductors?
Just assign unknown linear charge densities to each shell, as SammyS and I already suggested. Write out the equations for the resulting potentials and solve.
 
gruba said:
Could you show the expression for longitudinal charge density of grounded conductor and explain if it is not equal to zero? Also, did I derived correctly longitudinal charge densities for first two conductors?
The longitudinal charge density of grounded conductor depends upon the particular values one might be given for Va and Vb. In general, the longitudinal charge density of grounded conductor is not zero. To see this, for the electric field to be zero, beyond the grounded conductor (that is for r > c ) the sum of all of the longitudinal charge densities on all of three conductors must be ______ . (Use Gauss's Law to fill in the blank.)

By the way:
In this problem it appears that the thickness of the conductors is small enough to be ignored. However, you should know that any charge on the outer cylinder must reside on its inner wall.
 
Last edited:

Similar threads

  • · Replies 19 ·
Replies
19
Views
2K
Replies
10
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
Replies
5
Views
608
  • · Replies 10 ·
Replies
10
Views
2K
Replies
23
Views
4K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 12 ·
Replies
12
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K