# Elementary algebra of complex variables problem

I'm having difficulty deducing that Re z = 0. Related Calculus and Beyond Homework Help News on Phys.org
vela
Staff Emeritus
Homework Helper
Try multiplying the top and bottom by (1-w*).

Last edited by a moderator:
vela
Staff Emeritus
Homework Helper
You made a minor error in calculating the denominator when you canceled the ones.

Sorry for butting in, but although I can see where jdinatale went wrong in his last post, I still can't see how Re(z) can be proved to be zero.

Of course it's correct, but I can't quite see it.

Dick
Homework Helper
Sorry for butting in, but although I can see where jdinatale went wrong in his last post, I still can't see how Re(z) can be proved to be zero.

Of course it's correct, but I can't quite see it.
The calculation shows z is pure imaginary and that's still true after you make the correction. Doesn't that show Re(z)=0?

The calculation shows z is pure imaginary
How does it?

Sorry, I'm probably being very thick here and will live to regret it.

How does

$$z = (1 + \omega) / (1 - \omega)$$
where $\omega = e^{ik\pi/50}$

imply that $z$ is purely imaginary?

Like I say, I know it's correct to say so, but I'm lost on how to prove it - even after trying using the conjugate method as offered above.

It'll probably be a face-palm moment when I find out...

Dick
Homework Helper
How does it?

Sorry, I'm probably being very thick here and will live to regret it.

How does

$$z = (1 + \omega) / (1 - \omega)$$
where $\omega = e^{ik\pi/50}$

imply that $z$ is purely imaginary?

Like I say, I know it's correct to say so, but I'm lost on how to prove it - even after trying using the conjugate method as offered above.

It'll probably be a face-palm moment when I find out...
Look at what happens when jdinatale multiplies by (1+w*). The results has w-w* (which is pure imaginary) in the numerator and w+w* (which is pure real) in the denominator. What kind of a number is imaginary/real?

Look at what happens when jdinatale multiplies by (1+w*). The results has w-w* (which is pure imaginary) in the numerator and w+w* (which is pure real) in the denominator. What kind of a number is imaginary/real?
Ha-ha! I was right!!!

A complete face-palm...

Thanks for that. I blame my incompetence on my getting on a bit. 