MHB Elements of $\mathbb{F}_{2^2}: What Are They?

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Elements
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hello! :o

Which are the elements of $\mathbb{F}_{2^2}$ ?? (Wondering)

There are $4$ elements, right??

For each element $a$ in $\mathbb{F}_{2^2}$ it stands that $a^2=a \Rightarrow a^2 \in \mathbb{F}_{2^2}$, right??
 
Physics news on Phys.org
The elements are the following:

$$0,1,a,b$$

The product of two elements is in the field, so $$a \cdot b=0 \text{ or } 1 \text{ or } a \text{ or } b$$

It cannot be $0$ because $\mathbb{F}_{2^2}$ is an integral domain and since $a , b \neq 0$ the product cannot be $0$.

The product cannot ba $a$ or $b$, because then one of $a$ and $b$ must be $1$, and then the field would contain only $3$ elements.

Therefore, the product must be $1$, that means that $a \cdot b=1 \Rightarrow
b=a^{-1}$.

So, the elements are $$0,1,a,a^{-1}$$ right?? (Wondering)

Also, how could we show that $$\mathbb{F}_{2^2} \cong \mathbb{Z}_2(a)$$ where $a$ is of degree $2$ over $\mathbb{Z}_2$?? (Wondering)

Do we have to show that these two fields have the same elements?? (Wondering)
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top