- 5,963
- 3,149
100 "likes". You got it correct. One minor correction or two though: Change the ## I_o ## to an ## L _2 ##, and instead of a ## P_{A_2} ## on the right side, call it ## E ##. And leave off the last ## A_2 ##. (Note: ## L_2=\frac {\sigma T_2^4}{\pi} ##).JohnnyGui said:Great. So if the first integration over ##dA_1## for ##E## isn't needed, then the first integration formula would collapse to ##\frac{I_0 \cdot cos(\theta)^4}{R^2} = E##. Now for the second integration this would mean, according to post #110:
$$\int \frac{I_0 \cdot cos(\theta)^4}{R^2} \cdot dA_2 = P_{A_2} = T^4_2 \cdot \sigma \cdot A_2$$
This means that ##E = T^4_2 \cdot \sigma## and ##P_{incident} = T^4_2 \cdot \sigma \cdot A_1##.
Correct?
Last edited: