nolanp2 said:
eh the center of mass would still be at the same point so not much i would guess? but there's still the same amount of mass, it's just been seperated. I'm tsalking about when the net mass of the system is reduced after the event, i don't see how the two relate.
Well, the center of mass, even in the decay of a particle, will still remain the same, and the total energy also. That is to say, if you add the 4-vectors (E,px,py,pz) of the decay products, you will obtain the original (E,px,py,pz) of the original particle before decay. Now, what counts gravitationally is the E (in fact, the energy-momentum tensor, but we can do with the E here).
So imagine that you have a pi-0, gravitationally bound to, say, a proton (quite hypothetic, I know). If the pi-0 decays into two photons (each initially of energy about the mass of the pi-0 divided by 2), then those two photons will have to "climb out of the gravitational potential well" of the proton, and loose energy (shift to red). In the end, the two photons will have a total energy which is less than the energy of the pi-0, with exactly the amount of gravitational energy they needed to overcome the gravitational potential energy.
Of course, in practice this is ridiculous, because the gravitational energy of a proton and a pion are so terribly tiny as compared to the mass-energy of a pion, that you will never be able to measure this.