(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Hey guys, I'm doing a problem on quadratic drag and energy dissipation. Basically, the question asks me to find the energy dissipated when a ball of mass 'm' is thrown directly upwards with a velocity 'v_{0}', during the upwards journey to its maximum height, 'h'. The resistive force is 'av^{2}'. Now, whether or not it is relevant to answering the question (I think it is), I believe I need to find the integral of

'av^{2}' with respect to the displacement upwards, 'x'.

2. Relevant equations

I've derived the equation taking upwards as x-positive:

F = mvdv/dx = -mg -av^{2}

ignoring any '-' signs,

E=∫ F dx = ∫( -mg -av^{2})dx between x=0 and x=h

3. The attempt at a solution

Now obviously the energy has to equal 1/2*m*v_{0}^{2}due to the conservation of energy.

And this can be easily shown by integrating the RHS - mvdv/dx.

But when I get to the av^{2}, I tried substituting v=dx/dt, which doesn't make it any clearer.

I tried to do integration by parts, getting the av^{2}part to be axv^{2}- ∫2axvdv/dx dx.

Any ideas? Perhaps a knowledge of multi-variable calculus is needed?

EDIT: Thanks for your ideas guys, but I *DON'T* need to find the height 'h' (which is what people are offering suggestions about). Essentially, I'd like to know how to do ∫av^{2}dx, with v being dx/dt:

i.e. how do you find ∫ (dx/dt)^{2}dx ??????

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Energy dissipated by air resistance through integration

**Physics Forums | Science Articles, Homework Help, Discussion**