Energy transfer in elastic collision.

AI Thread Summary
To derive the energy transfer equation in an elastic collision of two bodies with masses m and M, conservation of energy and momentum must be applied in the laboratory frame. The equations include the kinetic energy conservation and momentum conservation in both x and y directions. However, there are four unknowns: the final speeds and angles, but only three equations available, making it impossible to solve without additional information. In head-on collisions, the problem simplifies to one dimension, allowing for a solution with two equations. In more complex scenarios, like nuclear collisions, one must specify one of the unknowns to calculate the others.
Payel Das
Messages
1
Reaction score
0
How do I derive the energy transfer equation in an elastic collision of two bodies of masses m and M respectively,using the energy and momentum conservation relations in the laboratory frame?

$$\frac{1}{2} m_1 v_0^2 = \frac 1 2 m_1 v^2 + \frac 1 2 m_2 V^2$$
$$m_1 v \cos(\phi)=m_1 v_0 -m_2 V \cos(\theta)$$
$$m_1 v \sin(\phi)=-m_2 V \sin(\theta)$$
but I could not solve for the final velocities $v$ and $V$ respectively
 
Physics news on Phys.org
You cannot expect to solve for the unknown quantities here. There are four unknowns, the two final speeds and the two angles, and only three equations. If it is a head-on collision, then it is just a 1-dimensional problem with two unknowns, the velocities after collision. There are two equations, the conservation equations, and the problem can be solved. In the general case, you have to specify one of the four unknowns. In Nuclear physics problems, such as the collision between an α-particle and a gold nucleus, the direction of the α-particle, after collision, is measured, and the corresponding values of the other three quantities can be calculated.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top