Eq. of motion of elastic 2D finite element

Click For Summary
The discussion centers on the equations of motion for a tetragonal 2D linear isotropic elastic material, specifically regarding its nodal points and potential energy. Participants emphasize the need for additional specifications, such as nodal variables, element shape functions, and stress states, to provide a meaningful answer. Clarification is also sought on the definition of "equations of motion," particularly concerning mass and stiffness properties. The complexity of quadrilateral elements in finite element analysis is highlighted, indicating that practical applications can deviate from theoretical expectations. The original poster expresses a desire to further study elasticity theory and is interested in coding a simulation related to the topic.
hilbert2
Science Advisor
Insights Author
Messages
1,600
Reaction score
607
A simple question about elasticity theory/finite element method:

Suppose I have a tetragonal 2D piece of a linear isotropic elastic material, that has Young's modulus ##E## and Poisson's ratio ##\nu##. The vertices of the tetragon are at positions ##\textbf{x}_{1}##, ##\textbf{x}_{2}##, ##\textbf{x}_{3}##, ##\textbf{x}_{4}##. In its unstrained state, the element is a square with side length ##L##.

What are the equations of motion of the nodal points (vertices of the tetragon). What is the potential energy, ##V(\textbf{x}_{1},\textbf{x}_{2},\textbf{x}_{3},\textbf{x}_{4})## of the element?

Thanks for any help
 
Physics news on Phys.org
This is unanswerable, unless you specify the nodal variables, element shape functions, integration rules, allowable stress states (e.g. plane stress or plane strain), what variational principle is used in the formulation, and probably a few more things I've forgotten.

I'm not sure what you mean be "equations of motion," unless you also specify how the mass properties are calculated (which might be different from the stiffness properties)

If you do specify all of the above, the answer is then a (probably long and tedious) plug-and-chug exercise.

Quadrilateral structural elements are where finite element mechanical analysis changes from a neat and tidy mathematical exercise in function approximation, to "welcome to the real world, and it's not necessarily a pretty sight" :smile:

(One thing I forgot and just remembered: just saying "the vertices are x1, x2, x3, x4" isn't enough to define the element geometry. Some people would take the diagonals of the element to be from x1 to x3 and x2 to x4, others from x1 to x4 and x2 to x3.)
 
Last edited:
Thanks for replying. I think I have to spend some more time on studying elasticity theory.

In the problem I was thinking about, all motion is constrained to happen in the same plane. I was thinking of coding a simulation like this with C++: http://wismuth.com/elas/elasticity.html . That was why I was asking.
 
I built a device designed to brake angular velocity which seems to work based on below, i used a flexible shaft that could bow up and down so i could visually see what was happening for the prototypes. If you spin two wheels in opposite directions each with a magnitude of angular momentum L on a rigid shaft (equal magnitude opposite directions), then rotate the shaft at 90 degrees to the momentum vectors at constant angular velocity omega, then the resulting torques oppose each other...

Similar threads

  • · Replies 0 ·
Replies
0
Views
787
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 13 ·
Replies
13
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
6K