Equal work lifting versus pushing up a plane?

  • Context: High School 
  • Thread starter Thread starter sh86
  • Start date Start date
  • Tags Tags
    Lifting Plane Work
Click For Summary

Discussion Overview

The discussion revolves around the concept of work in physics, specifically comparing the work done when lifting an object vertically versus pushing it up an inclined plane. Participants explore the definitions and implications of work, energy, and the forces involved in both scenarios.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • One participant expresses confusion about why the work done is considered the same in both lifting and pushing up an inclined plane, despite differing forces and distances involved.
  • Another participant states that the work done is equal because the gravitational force is conservative, and both methods result in the same change in gravitational potential energy.
  • Mathematical expressions for work are provided, showing that in both cases, the work done can be calculated as W = mgh.
  • Questions arise about the force required to push the object up the incline, specifically whether it is the horizontal component of the force and how it relates to the ramp's angle.
  • Clarifications are made regarding the components of forces acting on the object, particularly the role of gravity and the normal force.
  • A participant raises a scenario involving lateral movement of a box, questioning why no work is done against gravity when moving horizontally, despite the presence of force and displacement.
  • Responses clarify that while there is force exerted, no work is done against gravity during lateral movement, as there is no change in gravitational potential energy.
  • Further discussion highlights the concept of net work, indicating that while work may be done to accelerate the box, it can be countered by equal work done to decelerate it, resulting in zero net work.
  • Another participant emphasizes the definition of work involving the angle between force and displacement, noting that moving the box sideways does not change its gravitational potential energy.

Areas of Agreement / Disagreement

Participants express varying levels of understanding regarding the concept of work, with some agreeing on the definitions and calculations while others remain confused about specific scenarios, particularly lateral movement. The discussion reflects multiple competing views on the nature of work and energy in different contexts.

Contextual Notes

The discussion includes assumptions about the nature of forces and energy, particularly in the context of gravitational potential energy and the definition of work. Some mathematical steps and definitions may not be fully resolved or agreed upon.

sh86
Messages
19
Reaction score
0
Equal work lifting versus pushing up a plane??

I don't understand anything in physics having to do with work and/or energy. I drew a picture of the problem I'm having now:

http://img80.imageshack.us/img80/9834/physicsoc8.png

According to every physics book/website ever, the work in getting the object up there is the same in both cases.

I can't see why. Can someone please explain this to me? And why is it that just because they get to the same height does it automatically mean the work done is EXACTLY the same?
 
Last edited by a moderator:
Physics news on Phys.org
plane => less force but proportionally greater distance => equal work
 
Because the only force being considered is your force pushing on it and gravity, which is a conservative force. Gravity acts straight downward on the object, so moving it upward against the gravitational field raises it to a higher gravitational "potential".

If you want to prove it mathematically...

In the first case (straight up):
W = Fd
W = mgd
W = mgh

In the second case (along the plane):
W = Fd
W = mgsin(theta)d
sin(theta) = h/d
d = h/sin(theta)
W = mgsin(theta) * h/sin(theta)
W = mgh
 
Last edited:
gabee said:
In the second case (along the plane):
W = Fd
W = mgsin(theta)d
sin(theta) = h/d
d = h/sin(theta)
W = mgsin(theta) * h/sin(theta)
W = mgh

But why is the force equal to mg\sin(\theta)? Are you only considering the horizontal component of the force? (If so, why?) And is that 'd' you wrote just a general d or does it refer specifically to the d I drew in the picture (the length of the ramp)?
 
I used your drawings to choose the names for the variables. The d is your d up the ramp (the distance the object moves) and the h is the vertical displacement. mgsin(theta) is the component of gravity up the incline (mgcos(theta) cancels with the normal force exerted by the plane on the object). Therefore, your applied force must equal mgsin(theta) in order to move the object with constant velocity up the plane.
 
sh86 said:
But why is the force equal to mg\sin(\theta)? Are you only considering the horizontal component of the force? (If so, why?)
If by horizontal, you mean parallel to the plane, then yes. The reason is - that's the direction the object is moving, so that's the direction you must push it. If you push it at a lower angle, you are simply pushing it into the plane and if you push it at a higher angle, you are lifting it unnecessarily.

It is very helpful/useful to break-up forces into directional components for specifically this purpose.
 
Thanks everyone I've read what you've all written and I understand this triangle thing now but I still don't understand work at all.

I'm really confused on this: Say there's a box of mass m on the ground. I pick it up to my chest (h meters) and so have done mgh joules of work on the box. Now, holding the box tightly to my chest, I step to the side.

According to everyone I've talked to, I did NOT do work on the box when moving to the side... But this in my opinion is BS because I originally held the box still, and then I moved it with me to the left (or right). So that means it accelerated from rest and so by definition there was a force, RIGHT?!? And obviously there was a displacement too, right!? And work = force * distance and yet no work is done?!? THAT MAKES NO SENSE!
 
You do no work against gravity in moving a box laterally. You most certainly do work against the box's inertia.
 
SH86 your friends are looking at the total picture, work is the total cahnge in energy over some interval.

in the case you described above, you can easily see that the total change in the energy of the box is zero, as it was at rest originally, and at rest at the end of the interval.

you can also think about it as if you broke the interval into two halfs, in the first interval your exerting a force F on the box, and as such you do Fx work on the box over the first half of the distance. Now consider the second half of the interval where you are exerting a force in the opposite direction -F, this does -Fx work over the second half of the distance.

add them together and you get Fx-FX=0 or no work performed
 
  • #10
CPL.Luke said:
add them together and you get Fx-FX=0 or no work performed

So there actually really was work, but just no net work? Is that right?
 
  • #11
sh86 said:
According to everyone I've talked to, I did NOT do work on the box when moving to the side... But this in my opinion is BS because I originally held the box still, and then I moved it with me to the left (or right). So that means it accelerated from rest and so by definition there was a force, RIGHT?!? And obviously there was a displacement too, right!? And work = force * distance and yet no work is done?!? THAT MAKES NO SENSE!
You are absolutely correct. As Russ pointed out, if you accelerate the box as you move it to the side you are definitely doing work on it. Of course, if you bring the box to rest again as you move it to the side, you did positive work accelerating it, then an equal amount of negative work slowing it down. So the net work done on the box in moving it to the side is zero.

Note that in your original problem it was assumed that you did just the minimum work to "overcome" gravity and get the box to a height "h"--without giving the box any kinetic energy.
 
  • #12
Yes...not sure if you've figured this out already but the actual definition of work is W = \int_a^b F \dot dl (notice it's a dot product); along a straight line this reduces to W = F d \cos(\theta) where theta is the angle between the force and the direction of displacement. Therefore, if you are exerting an upward force on the box equal and opposite to its weight mg, and you move the box to the right, the angle between your force and the box's displacement is 90 degrees. W = Fdcos(theta) = Fd(0) = 0. Another way to think about it is what the others have said: you are not raising it to a higher gravitational potential by moving it sideways. If the object's total mechanical energy is made up of only kinetic energy and gravitational potential energy, then obviously you didn't change its total energy by just moving it sideways.
 

Similar threads

  • · Replies 30 ·
2
Replies
30
Views
5K
  • · Replies 23 ·
Replies
23
Views
3K
  • · Replies 54 ·
2
Replies
54
Views
7K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 10 ·
Replies
10
Views
5K
  • · Replies 26 ·
Replies
26
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K