Equality of two particular solutions of 2nd order linear ODE

In summary, the conversation discusses two integrals obtained by using inverse operators on a second order linear ODE, and the question of whether these integrals are equal. It is shown that these integrals are indeed equal for any twice differentiable function, as the order of inverse operators does not matter. This is due to the general rule of function composition.
  • #1
Harsh Bhardwaj
17
3
I got the following two integral for the a particular solution of a 2nd order linear ODE $$(D-a)(D-b)y = g(x)$$
by using inverse operators ##\frac{1}{D-a}## and ##\frac{1}{D-b}##. The two different integrals are obtained by operating these operators in different order on y to get a particular solution. It's my hunch that these integrals should be equal however I don't know how to prove it. I tried plugging in some exponential, trigonometric and power functions for g(x) and setting a and b. Both the integrals gave the exact same result(All arbitrary constants were dropped as I seek a particular solution).

$$y = e^{bx}\int e^{-bx}e^{ax}(\int e^{-ax}g(x)dx)dx$$
$$y = e^{ax}\int e^{-ax}e^{bx}(\int e^{-bx}g(x)dx)dx$$

I tried using integration by parts in different combinations and failed to prove the two integrals to be equal. Maybe the Leibniz's integral rule can be used to pull out the exponentials but I am not sure if and how it can be used for indefinite integrals.
Help me prove(or disprove) the equality of these two integrals. Thank you.
 
Physics news on Phys.org
  • #2
I don't know if it's possible to evaluate the integrals for an arbitrary function g(x).
 
  • #3
Mark44 said:
I don't know if it's possible to evaluate the integrals for an arbitrary function g(x).
I tried with some particular g(x). It was easy to prove that the two integrals are equal for g(x) = sin(kx), cos(kx) and exp(kx). I tried with g(x) = x^n but couldn't prove it(used reduction formulae and principle of induction). But all the examples I take by fixing n give the same result. Maybe I am just being lucky. It would be very helpful if someone can point out a counter example for g(x) such that the integrals are not equal and there will be no need for the proof.
 
  • #4
If ##y(x)## is a twice differentiable function on an open interval ##I##, then we easily obtain (on ##I##): ##(D-a)(D-b)y(x)=D^2y(x)-(a+b)\,Dy(x)+ab\,y(x)##, and likewise that ##(D-b)(D-a)y(x)=D^2y(x)-(a+b)\,Dy(x)+ab\,y(x)##, so these are equal for all twice differentiable functions ##y(x)## on ##I##.
Therefore, any particular solution of ##(D-a)(D-b)y(x)=g(x)## on ##I## is also a particular solution of ##(D-b)(D-a)y(x)=g(x)##, and vice versa.
 
  • #5
Erland said:
If ##y(x)## is a twice differentiable function on an open interval ##I##, then we easily obtain (on ##I##): ##(D-a)(D-b)y(x)=D^2y(x)-(a+b)\,Dy(x)+ab\,y(x)##, and likewise that ##(D-b)(D-a)y(x)=D^2y(x)-(a+b)\,Dy(x)+ab\,y(x)##, so these are equal for all twice differentiable functions ##y(x)## on ##I##.
Therefore, any particular solution of ##(D-a)(D-b)y(x)=g(x)## on ##I## is also a particular solution of ##(D-b)(D-a)y(x)=g(x)##, and vice versa.

These integrals give particular solution of y.I was wondering whether these solutions are the exact same functions. It is easy to see that the order of differentiation operators does not matter but is the same true for inverse operators? I did quite a few examples and the changing the order of inverse operators gave the exact same particular solution. My question is that is this true in general?
 
  • #6
Harsh Bhardwaj said:
These integrals give particular solution of y.I was wondering whether these solutions are the exact same functions. It is easy to see that the order of differentiation operators does not matter but is the same true for inverse operators? I did quite a few examples and the changing the order of inverse operators gave the exact same particular solution. My question is that is this true in general?
Since the "inverse operator" gives the general solution, and the general solution is just the set of particular solutions, given parametrically (with two integration constants), and since the sets of particular solutions are the same in both cases, the answer is: Yes, we get the same set of solutuions in both cases.
 
  • Like
Likes Delta2
  • #7
Harsh Bhardwaj said:
These integrals give particular solution of y.I was wondering whether these solutions are the exact same functions. It is easy to see that the order of differentiation operators does not matter but is the same true for inverse operators? I did quite a few examples and the changing the order of inverse operators gave the exact same particular solution. My question is that is this true in general?

General rule of function composition: [itex](AB)^{-1} = B^{-1}A^{-1}[/itex]. Thus if [itex]AB = BA[/itex] then [tex]B^{-1}A^{-1} = (AB)^{-1} = (BA)^{-1} = A^{-1}B^{-1}[/tex] as required.
 

1. What is the definition of equality of two particular solutions of 2nd order linear ODE?

The equality of two particular solutions of 2nd order linear ODE means that the two solutions have the same form and satisfy the same initial conditions. This means that when the two solutions are substituted into the differential equation, they both result in the same equation and also satisfy the same given initial values.

2. How can we determine if two particular solutions of 2nd order linear ODE are equal?

To determine if two particular solutions of 2nd order linear ODE are equal, we can substitute both solutions into the differential equation and compare the resulting equations. If they are the same, then the solutions are equal. Additionally, we can also check if they satisfy the same initial conditions.

3. What is the significance of equality of two particular solutions of 2nd order linear ODE?

The significance of equality of two particular solutions of 2nd order linear ODE is that it allows us to verify the correctness of our solutions. If two solutions are equal, it means that they both satisfy the given differential equation and initial values, providing a level of confidence in the accuracy of our solutions.

4. Can two particular solutions of 2nd order linear ODE be equal but have different forms?

Yes, it is possible for two particular solutions of 2nd order linear ODE to be equal but have different forms. This can occur when one solution is a linear combination of the other solution. In this case, the two solutions may look different, but when simplified, they result in the same equation.

5. How does the uniqueness theorem relate to the equality of two particular solutions of 2nd order linear ODE?

The uniqueness theorem states that a 2nd order linear ODE has a unique solution that satisfies given initial conditions. Therefore, if two particular solutions are equal, it means that they are the same unique solution, satisfying the given initial conditions. This reinforces the importance of checking for equality of solutions when solving 2nd order linear ODEs.

Similar threads

Replies
3
Views
1K
Replies
8
Views
166
Replies
3
Views
321
  • Calculus
Replies
6
Views
1K
Replies
6
Views
2K
Replies
8
Views
1K
Replies
2
Views
2K
Replies
4
Views
1K
  • Calculus and Beyond Homework Help
Replies
2
Views
269
Replies
1
Views
927
Back
Top