Equation connecting potential and potential energy of a distribution

Click For Summary

Homework Help Overview

The discussion revolves around the relationship between potential energy and electric potential in the context of continuous and discrete charge distributions. Participants explore equations that connect these concepts, particularly focusing on the derivation of one equation from another.

Discussion Character

  • Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants discuss the derivation of potential energy equations and the application of vector calculus identities. Questions arise regarding the naming of specific identities and their implications in the context of electric fields.

Discussion Status

The discussion is active, with participants sharing insights and clarifications about mathematical identities related to electric fields. Some participants express curiosity about the derivation process and the terminology used in vector calculus.

Contextual Notes

There is mention of specific mathematical identities and theorems, such as Gauss' theorem, which are relevant to the discussion but not fully resolved. Participants are also navigating the complexities of vector calculus in relation to the problem at hand.

Leo Liu
Messages
353
Reaction score
156
Homework Statement
.
Relevant Equations
.
The equation below allows us to calculate the potential energy of a continuous distribution of electric charge.
$$U=\frac {\epsilon_0} 2 \iiint\limits_\text{Entire electric field}\vec E^2\,dV$$
In my textbook, the author states
$$U=\frac 1 {8\pi\epsilon_0}\iiint\limits_\text{Entire electric field}\rho\phi\, dV$$
which relates the potential energy of the distribution to its electric potential. I wonder how it is derived from the first equation.

Edit: It looks like the equation is actually a special case of the following formula for a discrete configuration of charges:
$$U=\frac 1{4\pi\epsilon_0}\frac 1 2\sum_{j=1}^Nq_j\sum_{k\neq j}\frac{q_k}{r_{jk}}$$
 
Last edited:
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
The trick is to write ##\displaystyle{\int} E^2 dV = - \displaystyle{\int} \mathbf{E} \cdot \nabla \phi dV = -\displaystyle{\int}\nabla \cdot (\mathbf{E} \phi) dV + \displaystyle{\int} \phi \nabla \cdot \mathbf{E} dV##, where the integral is taken over all space. The first term vanishes by Gauss' theorem since ##\mathbf{E}## is zero at infinity.
 
  • Love
  • Wow
  • Like
Likes   Reactions: Steve4Physics, Leo Liu and Delta2
ergospherical said:
The trick is to write ##\displaystyle{\int} E^2 dV = - \displaystyle{\int} \mathbf{E} \cdot \nabla \phi dV = -\displaystyle{\int}\nabla \cdot (\mathbf{E} \phi) dV + \displaystyle{\int} \phi \nabla \cdot \mathbf{E} dV##, where the integral is taken over all space. The first term vanishes by Gauss' theorem since ##\mathbf{E}## is zero at infinity.
Can you tell me what the indentity $$\vec E\cdot\nabla\phi=\nabla\cdot(\vec E\phi)+\phi\nabla\cdot\vec E$$ is called? I am not very familiar with the del operator. Ty!
 
In suffix notation (with the ##x_i## Cartesian coordinates),\begin{align*}
\nabla \cdot (\mathbf{E} \phi) = \sum_i \dfrac{\partial}{\partial x_i} \left( E_i \phi \right) &= \sum_i \phi \dfrac{\partial E_i}{\partial x_i} + \sum_i E_i \dfrac{\partial \phi}{\partial x_i} \\

&= \phi \nabla \cdot \mathbf{E} + \mathbf{E} \cdot \nabla \phi
\end{align*}
 
  • Like
  • Wow
Likes   Reactions: Delta2 and Leo Liu
  • Like
Likes   Reactions: Leo Liu and Delta2

Similar threads

  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 12 ·
Replies
12
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 43 ·
2
Replies
43
Views
4K
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K