MHB Equation of Circle Through Origin

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Circle Origin
AI Thread Summary
The equation of a circle centered at (3,5) that passes through the origin (0,0) is derived using the distance formula. The distance from the origin to the center (3,5) is calculated as √34, which serves as the radius. Consequently, the equation of the circle is (x - 3)² + (y - 5)² = 34. This follows the standard form of a circle's equation, where the distance from the center to any point on the circle remains constant. Understanding the relationship between the center, radius, and points on the circle is crucial for solving such problems.
mathdad
Messages
1,280
Reaction score
0
Find the equation of the circle passing through the origin and centered at the point (3,5).

Origin means the point (0,0).
From the previous example, I found the equation of the circle centered at (3,5) to be (x - 3)^2 + (y - 5)^2 = 25.

I do not understand what part the origin plays here. The textbook does not give an example for this question. Must I find the distance from the origin to the point (3,5)?

Must I find the slope? Can I get a hint?
 
Mathematics news on Phys.org
RTCNTC said:
Find the equation of the circle passing through the origin and centered at the point (3,5).

Origin means the point (0,0).
From the previous example, I found the equation of the circle centered at (3,5) to be (x - 3)^2 + (y - 5)^2 = 25.

I do not understand what part the origin plays here. The textbook does not give an example for this question. Must I find the distance from the origin to the point (3,5)?

Must I find the slope? Can I get a hint?

Since the circle passes through the origin, then the distance from the origin to the center must be the radius. Now you have the radius, and the center was given, so stating the circle's equation will follow from that. :)
 
d = sqrt{(3-0)^2 + (5-0)^2}

d = sqrt{3^2 + 5^2}

d = sqrt{9 + 25}

d = sqrt{34} = radius = r

The equation must be (x - 3)^2 + (y - 5)^2 = [sqrt{34}]^2, which becomes (x - 3)^2 + (y - 5)^2 = 34.

Correct?
 
One definition for a circle is the locus of all points $(x,y)$ whose distance from some central point $(h,k)$ is the same, which is called the radius, and we'll label this radius $r$. Thus, the distance formula gives us:

$$r=\sqrt{(x-h)^2+(y-k)^2}$$

And upon squaring, we obtain the familiar equation for a circle in standard form:

$$(x-h)^2+(y-k)^2=r^2$$

So, if we are given the center $(h,k)$ and one point $\left(x_1,y_1\right)$ said to be on the circle, then by definition, we know the distance between the center and the given point on the circle must be $r$.
 
RTCNTC said:
d = sqrt{(3-0)^2 + (5-0)^2}

d = sqrt{3^2 + 5^2}

d = sqrt{9 + 25}

d = sqrt{34} = radius = r

The equation must be (x - 3)^2 + (y - 5)^2 = [sqrt{34}]^2, which becomes (x - 3)^2 + (y - 5)^2 = 34.

Correct?

Yes, that's correct. :)
 
MarkFL said:
One definition for a circle is the locus of all points $(x,y)$ whose distance from some central point $(h,k)$ is the same, which is called the radius, and we'll label this radius $r$. Thus, the distance formula gives us:

$$r=\sqrt{(x-h)^2+(y-k)^2}$$

And upon squaring, we obtain the familiar equation for a circle in standard form:

$$(x-h)^2+(y-k)^2=r^2$$

So, if we are given the center $(h,k)$ and one point $\left(x_1,y_1\right)$ said to be on the circle, then by definition, we know the distance between the center and the given point on the circle must be $r$.

This is very interesting. Thanks for the information...
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top