Equation with two second order variables

Click For Summary
The equation Z = -0.0006*X^2 + 0.0004*X -0.0008*Y^2 - 0.0006*Y + 0.956 represents a hyperbola, derived from setting two surface equations equal to each other. To find values for X and Y given a specific Z, one can complete the square in the x and y terms to convert the equation into standard form. The original attempt to use a differential method was unsuccessful, indicating the need for a different approach. The community suggests focusing on the relationship between the variables to solve for X and Y effectively. Understanding the geometric interpretation of the equation is crucial for finding solutions.
dunkdie
Messages
1
Reaction score
0
Hi all,

I've come across this forum when searching for solution to my problem and I found that the community is extremely helpful :)

I was working on my college project when I came across the equation below.

Homework Statement


Z = -0.0006*X^2 + 0.0004*X -0.0008*Y^2 - 0.0006*Y + 0.956

Suppose that I know the value of Z (as example Z=0.15), which method can I use to find the value of X and Y?


Homework Equations



The equation above was derived when I was trying to chart a surface graph from these two equations:

Z = -0.0006*X^2 + 0.0004*X + 0.956

and

Z = -0.0008*Y^2 - 0.0006*Y + 0.956

However I don't know the correctness of this method that I used to come up with surface graph Z = -0.0006*X^2 + 0.0004*X -0.0008*Y^2 - 0.0006*Y + 0.956
The picture of this surface graph is attached.


The Attempt at a Solution



I tried using differential method to solve the equation but so far no luck :( Hope somebody would come up with some method or explanation regarding the matter. Many thanks.


Regards,
John
 

Attachments

  • untitled.png
    untitled.png
    12.6 KB · Views: 419
Physics news on Phys.org
For a given value of z, your equation determines an ellipse. Complete the square in the x and y terms to get the ellipse into standard form.

However, I'm not so sure about this equation:
Z = -0.0006*X^2 + 0.0004*X -0.0008*Y^2 - 0.0006*Y + 0.956

You said it came about from these equations:
Z = -0.0006*X^2 + 0.0004*X + 0.956
Z = -0.0008*Y^2 - 0.0006*Y + 0.956

Presumably you set the two right sides equal, which would give you

-0.0006*X^2 + 0.0004*X + 0.956 = -0.0008*Y^2 - 0.0006*Y + 0.956
or, equivalently, -0.0006*X^2 + 0.0004*X = -0.0008*Y^2 - 0.0006*Y

Notice that there is no z and no 0.956.

The equation above represents a hyperbola that is the intersection of the to parabolic cylinders Z = -0.0006*X^2 + 0.0004*X + 0.956 and Z = -0.0008*Y^2 - 0.0006*Y + 0.956.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
6
Views
1K
Replies
7
Views
2K
Replies
1
Views
1K
  • · Replies 34 ·
2
Replies
34
Views
3K
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K