 #1
 5,405
 191
I want to model a coil circuit with induced EMF. I want to verify that my model is correct in a circuit. That the voltage developed across the load is calculated correctly. From the equivalent circuit, you can see the current depend on the jX_L and it acts as a low pass filter in the complete circuit loop because the value increase and cause less voltage develop across the Load.
Let coil:
[tex]Z_L=R_L+jX_L[/tex]
Maxwell eq. For EMF induction:
[tex]\nabla\times \vec E =\frac {\partial \vec B}{\partial t}\;\Rightarrow\; \int_S \nabla \times \vec E\;\cdot\;d\vec S = \int_C \vec E\cdot d \vec l = \frac{\partial}{\partial t}\left(\int_S \vec B \cdot d\vec S\right)=\frac{\partial \Phi}{\partial t}[/tex]
Where [itex]\Phi\;[/itex] is the magnetic flux. Therefore induced EMF:
[tex]V_{IND}= \int_S \nabla \times \vec E\;\cdot\;d\vec S = \int_C \vec E\cdot d \vec l = \frac{\partial}{\partial t}\left(\int_S \vec B \cdot d\vec S\right)=\frac{\partial \Phi}{\partial t}[/tex]
To put the whole thing together, using the coil to drive the load, the total equivalent circuit is shown with the [itex]\;V_{IND}\;[/itex] modeled as an ideal voltage source:
146972[/ATTACH]"]
where I use [itex]Z_L=R_L+jX_L[/itex] and the current in the loop is:
[tex]I= \frac {V_{IND}}{R_L+jX_L+R_{LOAD}}\;\hbox { and }\; V_{LOAD}=I\;R_{LOAD}[/tex]
I updated that the load is a pure resistance, not reactance, or else it can really get dicey!!
Thanks
Alan
Let coil:
[tex]Z_L=R_L+jX_L[/tex]
Maxwell eq. For EMF induction:
[tex]\nabla\times \vec E =\frac {\partial \vec B}{\partial t}\;\Rightarrow\; \int_S \nabla \times \vec E\;\cdot\;d\vec S = \int_C \vec E\cdot d \vec l = \frac{\partial}{\partial t}\left(\int_S \vec B \cdot d\vec S\right)=\frac{\partial \Phi}{\partial t}[/tex]
Where [itex]\Phi\;[/itex] is the magnetic flux. Therefore induced EMF:
[tex]V_{IND}= \int_S \nabla \times \vec E\;\cdot\;d\vec S = \int_C \vec E\cdot d \vec l = \frac{\partial}{\partial t}\left(\int_S \vec B \cdot d\vec S\right)=\frac{\partial \Phi}{\partial t}[/tex]
To put the whole thing together, using the coil to drive the load, the total equivalent circuit is shown with the [itex]\;V_{IND}\;[/itex] modeled as an ideal voltage source:
146972[/ATTACH]"]
where I use [itex]Z_L=R_L+jX_L[/itex] and the current in the loop is:
[tex]I= \frac {V_{IND}}{R_L+jX_L+R_{LOAD}}\;\hbox { and }\; V_{LOAD}=I\;R_{LOAD}[/tex]
I updated that the load is a pure resistance, not reactance, or else it can really get dicey!!
Thanks
Alan
Attachments

8.4 KB Views: 303
Last edited: