I Error in Concepts: Intro to Mechanics Kolenkow & Kleppner

Click For Summary
The discussion centers on the treatment of spacetime curves in the context of mechanics, specifically questioning whether they can be accurately represented as parabolas. While every differentiable curve can be approximated as a parabola to second order, the actual curve in this scenario is identified as a hyperbola. This distinction does not invalidate the derivation; rather, it highlights that the derivation is a valid second-order approximation. The Schwarzschild solution is referenced to illustrate the relationship between emitted and observed wave frequencies, emphasizing that the approximation holds under certain conditions. Concerns are raised about the treatment of special relativity in the referenced textbook, suggesting caution in its application.
Ramanathan k s
Messages
3
Reaction score
0
TL;DR
While reading "The Equivalence Principle and the Gravitational Red Shift" in the book (Introduction to Mechanic by Kolenkow & Kleppner) I'm having doubts about how they arrived at the result gL/(c^2).
They are treating the spacetime curve as a parabola, but is it a parabola?
And I think there is some serious conceptual error in the analysis.
please help me
1677244582020.png
 
Physics news on Phys.org
Ramanathan k s said:
They are treating the spacetime curve as a parabola, but is it a parabola?
Every differentiable curve is a parabola to 2nd order about any given point.
 
  • Like
Likes Vanadium 50 and vanhees71
Dale said:
Every differentiable curve is a parabola to 2nd order about any given point.
But what will be the actual curve in this case?
 
Ramanathan k s said:
But what will be the actual curve in this case?
It is actually a hyperbola. However, that does not make the derivation wrong. It just makes the derivation a derivation to 2nd order. This is not a "conceptual error", it is a valid approximation.
 
  • Like
Likes Ramanathan k s, PeterDonis, vanhees71 and 1 other person
It's still a somewhat hand-waving argument, but it's correct given the approximations made.

A simple argument is to use the exact Schwarzschild solution, of which we only need
$$\mathrm{d} s^2=(1-2m/r) c^2 \mathrm{d} t^2 + \ldots$$
Now a wave is emitted from a source at rest at ##r=r_0##. The time it takes from one maximum of the wave to the next is
$$\frac{2 \pi}{\omega_{\text{em}}} = \mathrm{d} \tau (r_0)=\sqrt{1-2m/r_0} \mathrm{d} t_{\text{em}}.$$
Then it's received by an observer at rest at ##r_0+h##, and there
$$\frac{2 \pi}{\omega_{\text{obs}}}=\mathrm{d} \tau (r_0+h) = \sqrt{1-2m/(r_0+h)} \mathrm{d} t_{\text{obs}}.$$
Now ##\mathrm{d} t_{\text{obs}}=\mathrm{d} t_{\text{em}}##, from which
$$\frac{\omega_{\text{obs}}}{\omega_{\text{em}}}=\sqrt{\frac{1-2m/r_0}{1-2m/(r_0+h)}} \simeq 1-\frac{m h}{(r_0-2m)r_0}.$$
Now ##m=G M/c^2=R_{\text{S}}/2## is half the Schwarzschild radius. For ##r_0 \gg R_{\text{S}}##, where the Newtonian limit is valid, we have
$$\frac{\omega_{\text{obs}}}{\omega_{\text{em}}}=1-\frac{m h}{r_0^2}=1-\frac{G M/(c^2 r_0^2)} h =1-\frac{g h}{c^2}.$$
 
  • Like
Likes dextercioby, Ramanathan k s and Dale
vanhees71 said:
It's still a somewhat hand-waving argument, but it's correct given the approximations made.

A simple argument is to use the exact Schwarzschild solution, of which we only need
$$\mathrm{d} s^2=(1-2m/r) c^2 \mathrm{d} t^2 + \ldots$$
Now a wave is emitted from a source at rest at ##r=r_0##. The time it takes from one maximum of the wave to the next is
$$\frac{2 \pi}{\omega_{\text{em}}} = \mathrm{d} \tau (r_0)=\sqrt{1-2m/r_0} \mathrm{d} t_{\text{em}}.$$
Then it's received by an observer at rest at ##r_0+h##, and there
$$\frac{2 \pi}{\omega_{\text{obs}}}=\mathrm{d} \tau (r_0+h) = \sqrt{1-2m/(r_0+h)} \mathrm{d} t_{\text{obs}}.$$
Now ##\mathrm{d} t_{\text{obs}}=\mathrm{d} t_{\text{em}}##, from which
$$\frac{\omega_{\text{obs}}}{\omega_{\text{em}}}=\sqrt{\frac{1-2m/r_0}{1-2m/(r_0+h)}} \simeq 1-\frac{m h}{(r_0-2m)r_0}.$$
Now ##m=G M/c^2=R_{\text{S}}/2## is half the Schwarzschild radius. For ##r_0 \gg R_{\text{S}}##, where the Newtonian limit is valid, we have
$$\frac{\omega_{\text{obs}}}{\omega_{\text{em}}}=1-\frac{m h}{r_0^2}=1-\frac{G M/(c^2 r_0^2)} h =1-\frac{g h}{c^2}.$$
actually the result is $$\ 1+\frac{g h}{c^2}.$$
 
Ramanathan k s said:
actually the result is ## 1+\frac{g h}{c^2}##
Can’t be, the ratio of frequencies has to be less than one for upwards-moving light to be redshifted.
 
  • Like
Likes PeterDonis and vanhees71
I think my sign is correct, because for ##h>0## there must be red shift, because the "naive photon" looses energy moving "upwards".
 

Similar threads