MHB Evaluate a floor function involving trigonometric functions

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $$\left\lfloor{\tan^4 \frac{3\pi}{7}+\tan^4 \frac{2\pi}{7}+2\left(\tan^2 \frac{3\pi}{7}+\tan^2 \frac{2\pi}{7}\right)}\right\rfloor$$.

Hi MHB,

I don't know how to solve the above problem, as I have exhausted all possible methods that I could think of, and I firmly believe there got to be an easy way to crack it because this is a competition problem...any help, please?:)
 
Mathematics news on Phys.org
Re: Evaluate a floor function involves of trigonometric functions

Hmm. That is, indeed, a tough one. The answer, according to my calculator, is $412$, but how to get that? I'm thinking esoteric trig identities are the way to go. Here's one that might be useful:
$$\cos\left(\frac{\pi}{7}\right)\cos\left(\frac{2\pi}{7}\right)\cos\left(\frac{3\pi}{7}\right)=\frac18.$$
Here's another:
$$\prod_{k=1}^{m}\tan\left(\frac{k\pi}{2m+1}\right)=\sqrt{2m+1}.$$
Fleshing this out for your case yields
$$\tan\left(\frac{\pi}{7}\right)\tan\left(\frac{2\pi}{7}\right)\tan\left(\frac{3\pi}{7}\right)=\sqrt{7}.$$
We can combine these two together to get
$$\sin\left(\frac{\pi}{7}\right)\sin\left(\frac{2\pi}{7}\right)\sin\left(\frac{3\pi}{7}\right)=\frac{\sqrt{7}}{8}.$$
Hmm. Squaring some of your expressions looks like we might be able to do something here.

I also noticed that there's a perfect square trinomial pattern hidden in your original expression:
\begin{align*}
&\left\lfloor\tan^4\left(\frac{3\pi}{7}\right)+\tan^4\left(\frac{2\pi}{7}\right)+2\left(\tan^2\left(\frac{3\pi}{7}\right)+\tan^2\left(\frac{2\pi}{7}\right)\right)\right\rfloor \\
=&\left\lfloor\left(\tan^2\left(\frac{3\pi}{7}\right)+1\right)^{\!2}+\left(\tan^2\left(\frac{2\pi}{7}\right)+1\right)^{\!2}
-2\right\rfloor \\
=&\left\lfloor \sec^4\left(\frac{3\pi}{7}\right)+\sec^4\left(\frac{2\pi}{7}\right)-2\right\rfloor.\end{align*}

I'm not sure where to go from here; does this give you any ideas?
 
Thanks so much Ackbach for your reply!

I will think of it based on your observations and hopefully I can crack it soon and when I have done so, I sure will post back...it may take a while as I am very, very busy these days...
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top