Evaluate a floor function involving trigonometric functions

Click For Summary
SUMMARY

The discussion focuses on evaluating the expression $$\left\lfloor{\tan^4 \frac{3\pi}{7}+\tan^4 \frac{2\pi}{7}+2\left(\tan^2 \frac{3\pi}{7}+\tan^2 \frac{2\pi}{7}\right)}\right\rfloor$$, with the calculated result being 412. Key trigonometric identities, such as $$\cos\left(\frac{\pi}{7}\right)\cos\left(\frac{2\pi}{7}\right)\cos\left(\frac{3\pi}{7}\right)=\frac{1}{8}$$ and $$\prod_{k=1}^{m}\tan\left(\frac{k\pi}{2m+1}\right)=\sqrt{2m+1}$$, are suggested as useful tools for simplifying the expression. The discussion also highlights a perfect square trinomial pattern that aids in the evaluation process.

PREREQUISITES
  • Understanding of trigonometric functions, specifically tangent and secant.
  • Familiarity with floor functions in mathematical expressions.
  • Knowledge of trigonometric identities and their applications.
  • Ability to manipulate algebraic expressions involving squares and products.
NEXT STEPS
  • Study advanced trigonometric identities, particularly those involving products and sums.
  • Learn about the properties of floor functions and their implications in mathematical evaluations.
  • Explore the derivation and application of perfect square trinomials in trigonometric contexts.
  • Investigate the relationship between tangent and secant functions in various trigonometric identities.
USEFUL FOR

Mathematicians, students preparing for competitions, and anyone interested in advanced trigonometric evaluations and identities.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $$\left\lfloor{\tan^4 \frac{3\pi}{7}+\tan^4 \frac{2\pi}{7}+2\left(\tan^2 \frac{3\pi}{7}+\tan^2 \frac{2\pi}{7}\right)}\right\rfloor$$.

Hi MHB,

I don't know how to solve the above problem, as I have exhausted all possible methods that I could think of, and I firmly believe there got to be an easy way to crack it because this is a competition problem...any help, please?:)
 
Mathematics news on Phys.org
Re: Evaluate a floor function involves of trigonometric functions

Hmm. That is, indeed, a tough one. The answer, according to my calculator, is $412$, but how to get that? I'm thinking esoteric trig identities are the way to go. Here's one that might be useful:
$$\cos\left(\frac{\pi}{7}\right)\cos\left(\frac{2\pi}{7}\right)\cos\left(\frac{3\pi}{7}\right)=\frac18.$$
Here's another:
$$\prod_{k=1}^{m}\tan\left(\frac{k\pi}{2m+1}\right)=\sqrt{2m+1}.$$
Fleshing this out for your case yields
$$\tan\left(\frac{\pi}{7}\right)\tan\left(\frac{2\pi}{7}\right)\tan\left(\frac{3\pi}{7}\right)=\sqrt{7}.$$
We can combine these two together to get
$$\sin\left(\frac{\pi}{7}\right)\sin\left(\frac{2\pi}{7}\right)\sin\left(\frac{3\pi}{7}\right)=\frac{\sqrt{7}}{8}.$$
Hmm. Squaring some of your expressions looks like we might be able to do something here.

I also noticed that there's a perfect square trinomial pattern hidden in your original expression:
\begin{align*}
&\left\lfloor\tan^4\left(\frac{3\pi}{7}\right)+\tan^4\left(\frac{2\pi}{7}\right)+2\left(\tan^2\left(\frac{3\pi}{7}\right)+\tan^2\left(\frac{2\pi}{7}\right)\right)\right\rfloor \\
=&\left\lfloor\left(\tan^2\left(\frac{3\pi}{7}\right)+1\right)^{\!2}+\left(\tan^2\left(\frac{2\pi}{7}\right)+1\right)^{\!2}
-2\right\rfloor \\
=&\left\lfloor \sec^4\left(\frac{3\pi}{7}\right)+\sec^4\left(\frac{2\pi}{7}\right)-2\right\rfloor.\end{align*}

I'm not sure where to go from here; does this give you any ideas?
 
Thanks so much Ackbach for your reply!

I will think of it based on your observations and hopefully I can crack it soon and when I have done so, I sure will post back...it may take a while as I am very, very busy these days...
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
8
Views
2K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K