Evaluate Sum: $\cos^3\beta/\cos\alpha + \sin^3\beta/\sin\alpha$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Sum
Click For Summary
SUMMARY

The evaluation of the expression $\dfrac{\cos^3 \beta}{\cos \alpha}+\dfrac{\sin^3 \beta}{\sin \alpha}$ under the condition $\dfrac{\cos \alpha}{\cos \beta}+\dfrac{\sin \alpha}{\sin \beta}=-1$ results in a definitive value of 1. The derivation involves substituting $\sin \alpha = m$, $\sin \beta = n$, and $\dfrac{\cos \alpha}{\cos \beta} = p$, leading to a series of algebraic transformations that simplify the expression to 1. This conclusion is reached through careful manipulation of trigonometric identities and algebraic fractions.

PREREQUISITES
  • Understanding of trigonometric identities and relationships
  • Familiarity with algebraic manipulation and simplification techniques
  • Knowledge of sine and cosine functions
  • Ability to work with equations involving multiple variables
NEXT STEPS
  • Study trigonometric identities and their applications in algebra
  • Learn advanced algebraic manipulation techniques for simplifying complex expressions
  • Explore the properties of sine and cosine functions in depth
  • Investigate the implications of trigonometric equations in various mathematical contexts
USEFUL FOR

Mathematicians, students studying trigonometry, educators teaching algebra and trigonometric identities, and anyone interested in solving complex trigonometric equations.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $\dfrac{\cos \alpha}{\cos \beta}+\dfrac{\sin \alpha}{\sin \beta}=-1$, evaluate $\dfrac{\cos^3 \beta}{\cos \alpha}+\dfrac{\sin^3 \beta}{\sin \alpha}$.
 
Mathematics news on Phys.org
anemone said:
If $\dfrac{\cos \alpha}{\cos \beta}+\dfrac{\sin \alpha}{\sin \beta}=-1$, evaluate $\dfrac{\cos^3 \beta}{\cos \alpha}+\dfrac{\sin^3 \beta}{\sin \alpha}$.

If we let $\sin \alpha=m$, $\sin \beta=n$, $\dfrac{\cos \alpha}{\cos \beta}=p$, the original given equality can rewritten as:

$\dfrac{\cos \alpha}{\cos \beta}+\dfrac{\sin \alpha}{\sin \beta}=-1$ $\rightarrow p+\dfrac{m}{n}=-1$

[TABLE="class: grid, width: 800"]
[TR]
[TD]$\therefore \dfrac{m}{n}=-1-p$

$\therefore-n=\dfrac{m}{1+p}$

$\therefore m=-n(1+p)$[/TD]
[TD]$\therefore p+\dfrac{m}{\sin \beta}=-1$

$\sin \beta=-\left( \dfrac{m}{1+p} \right)$

$\sin^2 \beta=\left( \dfrac{m}{1+p} \right)^2$

$\sin^2 \beta=n^2$

$1-\sin^2 \beta=1-n^2$

$\cos^2 \beta=1-n^2$[/TD]
[/TR]
[TR]
[TD][/TD]
[TD]$\therefore \dfrac{\cos^2 \alpha}{\cos^2 \beta}=p^2$

$\dfrac{1-\sin^2 \alpha}{1-\sin^2 \beta}=p^2$

$\dfrac{1-m^2}{1-n^2}=p^2$

$1-m^2=p^2(1-n^2)$

$1-(n(1+p))^2=p^2(1-n^2)$

$p^2+n^2+2pn^2=1$[/TD]
[/TR]
[/TABLE]

We're asked to evaluate

$\begin{align*}

\dfrac{\cos^3 \beta}{\cos \alpha}+\dfrac{\sin^3 \beta}{\sin \alpha}&=\dfrac{\cos^2 \beta }{\dfrac{\cos \alpha}{\cos \beta}}+\dfrac{\sin^2 \beta}{\dfrac{\sin \alpha}{\sin \beta}}\\&=\dfrac{\cos^2 \beta }{p}+\dfrac{\sin^2 \beta}{\dfrac{m}{n}}\\&=\dfrac{\cos^2 \beta }{p}+\dfrac{\sin^2 \beta}{-1-p}\\&=\dfrac{1-n^2 }{p}-\dfrac{n^2}{1+p}\\&=\dfrac{(1-n^2)(1+p)-pn^2}{p(1+p)}\\&=\dfrac{1-n^2+p-pn^2-n^2p}{p(1+p)}\\&=\dfrac{1-(n^2+p^2+2pn^2-p^2)+p}{p(1+p)}\\&=\dfrac{1-1+p^2+p}{p(1+p)}\\&=\dfrac{\cancel{p(1+p)}}{ \cancel{p(1+p)}}\\&=1 \end{align*}$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
46
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K