MHB Evaluate Sum: $\cos^3\beta/\cos\alpha + \sin^3\beta/\sin\alpha$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Sum
Click For Summary
The expression $\dfrac{\cos^3 \beta}{\cos \alpha} + \dfrac{\sin^3 \beta}{\sin \alpha}$ is evaluated under the condition $\dfrac{\cos \alpha}{\cos \beta} + \dfrac{\sin \alpha}{\sin \beta} = -1$. By substituting variables and manipulating the equations, it is shown that the evaluation simplifies to 1. The calculations involve expressing sine and cosine in terms of the defined variables and applying algebraic identities. Ultimately, the result confirms that the original expression equals 1. This conclusion highlights the relationship between the trigonometric functions under the given condition.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $\dfrac{\cos \alpha}{\cos \beta}+\dfrac{\sin \alpha}{\sin \beta}=-1$, evaluate $\dfrac{\cos^3 \beta}{\cos \alpha}+\dfrac{\sin^3 \beta}{\sin \alpha}$.
 
Mathematics news on Phys.org
anemone said:
If $\dfrac{\cos \alpha}{\cos \beta}+\dfrac{\sin \alpha}{\sin \beta}=-1$, evaluate $\dfrac{\cos^3 \beta}{\cos \alpha}+\dfrac{\sin^3 \beta}{\sin \alpha}$.

If we let $\sin \alpha=m$, $\sin \beta=n$, $\dfrac{\cos \alpha}{\cos \beta}=p$, the original given equality can rewritten as:

$\dfrac{\cos \alpha}{\cos \beta}+\dfrac{\sin \alpha}{\sin \beta}=-1$ $\rightarrow p+\dfrac{m}{n}=-1$

[TABLE="class: grid, width: 800"]
[TR]
[TD]$\therefore \dfrac{m}{n}=-1-p$

$\therefore-n=\dfrac{m}{1+p}$

$\therefore m=-n(1+p)$[/TD]
[TD]$\therefore p+\dfrac{m}{\sin \beta}=-1$

$\sin \beta=-\left( \dfrac{m}{1+p} \right)$

$\sin^2 \beta=\left( \dfrac{m}{1+p} \right)^2$

$\sin^2 \beta=n^2$

$1-\sin^2 \beta=1-n^2$

$\cos^2 \beta=1-n^2$[/TD]
[/TR]
[TR]
[TD][/TD]
[TD]$\therefore \dfrac{\cos^2 \alpha}{\cos^2 \beta}=p^2$

$\dfrac{1-\sin^2 \alpha}{1-\sin^2 \beta}=p^2$

$\dfrac{1-m^2}{1-n^2}=p^2$

$1-m^2=p^2(1-n^2)$

$1-(n(1+p))^2=p^2(1-n^2)$

$p^2+n^2+2pn^2=1$[/TD]
[/TR]
[/TABLE]

We're asked to evaluate

$\begin{align*}

\dfrac{\cos^3 \beta}{\cos \alpha}+\dfrac{\sin^3 \beta}{\sin \alpha}&=\dfrac{\cos^2 \beta }{\dfrac{\cos \alpha}{\cos \beta}}+\dfrac{\sin^2 \beta}{\dfrac{\sin \alpha}{\sin \beta}}\\&=\dfrac{\cos^2 \beta }{p}+\dfrac{\sin^2 \beta}{\dfrac{m}{n}}\\&=\dfrac{\cos^2 \beta }{p}+\dfrac{\sin^2 \beta}{-1-p}\\&=\dfrac{1-n^2 }{p}-\dfrac{n^2}{1+p}\\&=\dfrac{(1-n^2)(1+p)-pn^2}{p(1+p)}\\&=\dfrac{1-n^2+p-pn^2-n^2p}{p(1+p)}\\&=\dfrac{1-(n^2+p^2+2pn^2-p^2)+p}{p(1+p)}\\&=\dfrac{1-1+p^2+p}{p(1+p)}\\&=\dfrac{\cancel{p(1+p)}}{ \cancel{p(1+p)}}\\&=1 \end{align*}$
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
46
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K