MHB Evaluate Sum: $\cos^3\beta/\cos\alpha + \sin^3\beta/\sin\alpha$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Sum
AI Thread Summary
The expression $\dfrac{\cos^3 \beta}{\cos \alpha} + \dfrac{\sin^3 \beta}{\sin \alpha}$ is evaluated under the condition $\dfrac{\cos \alpha}{\cos \beta} + \dfrac{\sin \alpha}{\sin \beta} = -1$. By substituting variables and manipulating the equations, it is shown that the evaluation simplifies to 1. The calculations involve expressing sine and cosine in terms of the defined variables and applying algebraic identities. Ultimately, the result confirms that the original expression equals 1. This conclusion highlights the relationship between the trigonometric functions under the given condition.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $\dfrac{\cos \alpha}{\cos \beta}+\dfrac{\sin \alpha}{\sin \beta}=-1$, evaluate $\dfrac{\cos^3 \beta}{\cos \alpha}+\dfrac{\sin^3 \beta}{\sin \alpha}$.
 
Mathematics news on Phys.org
anemone said:
If $\dfrac{\cos \alpha}{\cos \beta}+\dfrac{\sin \alpha}{\sin \beta}=-1$, evaluate $\dfrac{\cos^3 \beta}{\cos \alpha}+\dfrac{\sin^3 \beta}{\sin \alpha}$.

If we let $\sin \alpha=m$, $\sin \beta=n$, $\dfrac{\cos \alpha}{\cos \beta}=p$, the original given equality can rewritten as:

$\dfrac{\cos \alpha}{\cos \beta}+\dfrac{\sin \alpha}{\sin \beta}=-1$ $\rightarrow p+\dfrac{m}{n}=-1$

[TABLE="class: grid, width: 800"]
[TR]
[TD]$\therefore \dfrac{m}{n}=-1-p$

$\therefore-n=\dfrac{m}{1+p}$

$\therefore m=-n(1+p)$[/TD]
[TD]$\therefore p+\dfrac{m}{\sin \beta}=-1$

$\sin \beta=-\left( \dfrac{m}{1+p} \right)$

$\sin^2 \beta=\left( \dfrac{m}{1+p} \right)^2$

$\sin^2 \beta=n^2$

$1-\sin^2 \beta=1-n^2$

$\cos^2 \beta=1-n^2$[/TD]
[/TR]
[TR]
[TD][/TD]
[TD]$\therefore \dfrac{\cos^2 \alpha}{\cos^2 \beta}=p^2$

$\dfrac{1-\sin^2 \alpha}{1-\sin^2 \beta}=p^2$

$\dfrac{1-m^2}{1-n^2}=p^2$

$1-m^2=p^2(1-n^2)$

$1-(n(1+p))^2=p^2(1-n^2)$

$p^2+n^2+2pn^2=1$[/TD]
[/TR]
[/TABLE]

We're asked to evaluate

$\begin{align*}

\dfrac{\cos^3 \beta}{\cos \alpha}+\dfrac{\sin^3 \beta}{\sin \alpha}&=\dfrac{\cos^2 \beta }{\dfrac{\cos \alpha}{\cos \beta}}+\dfrac{\sin^2 \beta}{\dfrac{\sin \alpha}{\sin \beta}}\\&=\dfrac{\cos^2 \beta }{p}+\dfrac{\sin^2 \beta}{\dfrac{m}{n}}\\&=\dfrac{\cos^2 \beta }{p}+\dfrac{\sin^2 \beta}{-1-p}\\&=\dfrac{1-n^2 }{p}-\dfrac{n^2}{1+p}\\&=\dfrac{(1-n^2)(1+p)-pn^2}{p(1+p)}\\&=\dfrac{1-n^2+p-pn^2-n^2p}{p(1+p)}\\&=\dfrac{1-(n^2+p^2+2pn^2-p^2)+p}{p(1+p)}\\&=\dfrac{1-1+p^2+p}{p(1+p)}\\&=\dfrac{\cancel{p(1+p)}}{ \cancel{p(1+p)}}\\&=1 \end{align*}$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top