Captain1024
- 44
- 2
Homework Statement
Evaluate the Fourier Transform of the damped sinusoidal wave g(t)=e^{-t}sin(2\pi f_ct)u(t) where u(t) is the unit step function.
Homework Equations
\omega =2\pi f
G(f)=\int ^{\infty}_{-\infty} g(t)e^{-j2\pi ft}dt
sin(\omega _ct)=\frac{e^{j\omega _ct}-e^{-j\omega _ct}}{2j}
The Attempt at a Solution
G(f)=\int ^{\infty}_{-\infty}e^{-t}sin(2\pi f_ct)u(t)e^{-j2\pi ft}dt
sin(2\pi f_ct)=\frac{e^{j2\pi f_ct}-e^{-j2\pi f_ct}}{2j}
G(f)=\frac{1}{2j}\int ^{\infty}_{0}e^{-t}(e^{j2\pi f_ct}-e^{-j2\pi f_ct})e^{-f2\pi ft}dt
G(f)=\frac{1}{2j}\int ^{\infty}_{0}e^{-j2\pi ft-t}(e^{j2\pi f_ct}-e^{-j2\pi f_ct})dt
G(f)=\frac{1}{2j}\int ^{\infty}_{0}e^{-j2\pi ft-t+j2\pi f_ct}-e^{-j2\pi ft-t-j2\pi f_ct}dt
G(f)=\frac{1}{2j}\int ^{\infty}_{0}e^{j2\pi t(f_c-f)-t}-e^{-j2\pi t(f+f_c)-t}dt
I am not feeling confident on my algebra and I also feel like I should be able to simplify this more before I integrate.