MHB Evaluate the surface integral $\iint\limits_{\sum}f\cdot d\sigma$

Click For Summary
The discussion focuses on evaluating the surface integral $\iint\limits_{\sum} f \cdot d\sigma$ for the vector field $f(x,y,z) = x^2\hat{i} + xy\hat{j} + z\hat{k}$ over the specified triangular region on the plane. The parametrization of the surface is established, and the cross product of the partial derivatives is calculated to find the area element. Despite following the integration process, the computed result is $\frac{7}{4}$, which differs from the expected answer of $\frac{15}{4}$. Participants express confusion regarding the discrepancy and seek clarification on the integration steps and the correct application of the normal vector. The discussion highlights the importance of accurate parametrization and integration in surface integrals.
WMDhamnekar
MHB
Messages
378
Reaction score
30
Evaluate the surface integral $\iint\limits_{\sum} f \cdot d\sigma $ where $ f(x,y,z) = x^2\hat{i} + xy\hat{j} + z\hat{k}$ and $\sum$ is the part of the plane 6x +3y +2z =6 with x ≥ 0, y ≥ 0,

z ≥ 0 , with the outward unit normal n pointing in the positive z direction.

My attempt to answer this question:

We need to parametrize the $\sum$. As we project $\sum$ onto xy-plane, it yields triangular region R = {(x,y): 0 ≤ x≤ 1, 0 ≤ y ≤ (2-2x) }. Thus, using (u,v) instead of (x,y), we see that,

x=u, y =v , z= 3-3u-3v/2 for 0 ≤ u ≤ 1, 0 ≤ v ≤ (2-2u) is the parametrization of $\sum$ over R (since z = 3-3x-3y/2 on $\sum$)
For (u,v) in R and for r(u,v) = x(u,v)i + y(u,v)j + z(u,v)k = ui + vj + (3-3u-3v/2)k we have

$\displaystyle\left\vert\frac{\partial{r}}{\partial{u}} \times \frac{\partial{r}}{\partial{v}} \displaystyle\right\vert= [1,0,-3] \times[ 0,1,-3/2] = [3, 3/2 ,1] \Rightarrow \left\vert \frac{\partial{r}}{\partial{u}} \times \frac{\partial{r}}{\partial{v}} \right\vert= \frac72$

Thus, integrating over R using vertical slices $\iint\limits_{\sum} f\cdot d\sigma = \iint\limits_{\sum} f\cdot n d\sigma $
$ \iint\limits_{\sum} f\cdot d\sigma=\iint\limits_{R} (f(x(u,v), y(u,v), z(u,v))\cdot n )\left\vert \frac{\partial{r}}{\partial{u}} \times \frac{\partial{r}}{\partial{v}} \right\vert dv du $

$\iint\limits_{\sum} f\cdot d\sigma = \int_0^1 \int_0^{2-2u} (\frac67 u^2 + \frac{3uv}{7} + \frac67 -\frac67 u -\frac37 v )\frac72 dv du $

$\iint\limits_{\sum} f\cdot d\sigma = \frac74 $

But the answer provided is $\frac{15}{4}.$How is that? Where are we wrong in the computation of answer?
 
Last edited:
Physics news on Phys.org
Remember that <br /> \mathbf{n} \left\| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right\|\,du\,dv<br /> = \left(\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right)\,du\,dv.

With your parametrization, \mathbf{n}\,d\sigma = \begin{pmatrix} 3 \\ \frac32 \\ 1 \end{pmatrix}\,du\,dv and hence <br /> \int_\Sigma \mathbf{f} \cdot \mathbf{n} \,d\sigma = \int_0^1 \int_0^{2(1-x)}<br /> 3x^2 + \frac32 (x-1)y + 3(1 - x) \,dy\,dx for which I also get \frac 74.
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
749
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K