MHB Evaluating an Integral with Exponential Factors

Click For Summary
The integral of interest is shown to equal \(\frac{e^{a^{4}b^{4}}}{4a} \Gamma \left( \frac{1}{4} \right)\) for \(a > 0\) and \(b \ge 0\). The approach involves integrating the function \(f(z) = e^{-a^{4}z^{4}}\) around a rectangular contour in the complex plane. By applying the residue theorem, the contributions from the contour lead to a simplification where the real parts are equated. The limit of certain integrals vanishes as \(R\) approaches infinity, confirming the equality. This method effectively demonstrates the evaluation of the integral with exponential factors.
polygamma
Messages
227
Reaction score
0
Show that for $a >0$ and $b \ge 0$,

$$\int_{0}^{\infty} e^{-a^{4}x^{2}(x^{2}-6b^{2})} \cos \Big(4a^{4}bx(x^{2}-b^{2}) \Big) \ dx = \frac{e^{a^{4}b^{4}}}{4a} \Gamma \left( \frac{1}{4} \right) $$
 
Mathematics news on Phys.org
Hint:

Integrate $ \displaystyle f(z)=e^{-a^{4}z^{4}}$ around the appropriate rectangular contour.
 
Hint 2:

Integrate $ \displaystyle e^{-a^{4}z^{4}}$ around a rectangle with vertices at $z=0, z= \infty, z= \infty + ib$, and $z=ib$, and notice that the integral along the left side of the rectangle is purely imaginary and that the integral along the right side of the rectangle vanishes.
 
Let $f(z) = e^{-a^{4}z^{4}}$ and integrate around a rectangle with vertices at $z= 0, z = \infty, z=\infty+ib$, and $z= ib$.Then going around the contour counterclockwise we have

$$\int_{0}^{\infty} e^{-a^{4}x^{4}} \ dx + \lim_{R \to \infty} \int_{0}^{b} f(R + it) \ i dt - \int_{0}^{\infty} f(t+ib) \ dt - \int_{0}^{b} f(it) i \ dt = 2 \pi i (0)=0 \ \ (1)$$$$\int_{0}^{\infty} e^{-a^{4}x^{4}} \ dx = \frac{1}{4a} \int_{0}^{\infty} e^{-u} u^{1/4-1} \ du = \frac{1}{4a} \Gamma \left(\frac{1}{4} \right) $$$$\Big| \int_{0}^{b} f(R+it) i \ dt \Big| \le \int_{0}^{b} \Big| e^{-a^{4}(R+it)^{4}} \Big| \ dt = e^{-a^{4}R^{4}} \int_{0}^{b} e^{6a^{4}R^{2}t^{2}} e^{-a^{4}t^{4}} \ dt$$

$$ < e^{-a^{4} R^{4}} \int_{0}^{b} e^{6a^{4} R^{2} b^{2}} e^{-a^{4}b^{4}} \ dt = b e^{-a^{4}R^{2}(R^{2}-6b^{2})} e^{-a^{4}b^{4}} \to 0 \ \text{as} \ R \to \infty$$$$ \int_{0}^{\infty} f(t+ib) \ dt = e^{-a^{4}b^{4}} \int_{0}^{\infty} \exp \Big(-a^{4}(t^{4}+4it^{3}b-6t^{2}b^{2}-4itb^{3}) \Big) \ dt$$$$ \int_{o}^{b} f(it) \ dt = i \int_{0}^{b}e^{-a^{4}t^{4}} \ dt $$Now equate the real parts on both sides of (1).$$ \frac{1}{4a} \Gamma \left(\frac{1}{4} \right) - e^{-a^{4}b^{4}} \int_{0}^{\infty} e^{-a^{4}t^{4} -6a^{4}t^{2}b^{2}} \cos \Big(4a^{4}t^{3}b - 4a^{4}tb^{3} \Big) \ dt = 0 $$

$$ \implies \int_{0}^{\infty} e^{-a^{4}t^{2}(t^{2}-6b^{2})} \cos \Big(4a^{4}bt(t^{2}-b^{2}) \Big) \ dx = \frac{e^{a^{4}b^{4}}}{4a} \Gamma \left( \frac{1}{4} \right) $$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K