MHB Evaluating an Integral with Exponential Factors

AI Thread Summary
The integral of interest is shown to equal \(\frac{e^{a^{4}b^{4}}}{4a} \Gamma \left( \frac{1}{4} \right)\) for \(a > 0\) and \(b \ge 0\). The approach involves integrating the function \(f(z) = e^{-a^{4}z^{4}}\) around a rectangular contour in the complex plane. By applying the residue theorem, the contributions from the contour lead to a simplification where the real parts are equated. The limit of certain integrals vanishes as \(R\) approaches infinity, confirming the equality. This method effectively demonstrates the evaluation of the integral with exponential factors.
polygamma
Messages
227
Reaction score
0
Show that for $a >0$ and $b \ge 0$,

$$\int_{0}^{\infty} e^{-a^{4}x^{2}(x^{2}-6b^{2})} \cos \Big(4a^{4}bx(x^{2}-b^{2}) \Big) \ dx = \frac{e^{a^{4}b^{4}}}{4a} \Gamma \left( \frac{1}{4} \right) $$
 
Mathematics news on Phys.org
Hint:

Integrate $ \displaystyle f(z)=e^{-a^{4}z^{4}}$ around the appropriate rectangular contour.
 
Hint 2:

Integrate $ \displaystyle e^{-a^{4}z^{4}}$ around a rectangle with vertices at $z=0, z= \infty, z= \infty + ib$, and $z=ib$, and notice that the integral along the left side of the rectangle is purely imaginary and that the integral along the right side of the rectangle vanishes.
 
Let $f(z) = e^{-a^{4}z^{4}}$ and integrate around a rectangle with vertices at $z= 0, z = \infty, z=\infty+ib$, and $z= ib$.Then going around the contour counterclockwise we have

$$\int_{0}^{\infty} e^{-a^{4}x^{4}} \ dx + \lim_{R \to \infty} \int_{0}^{b} f(R + it) \ i dt - \int_{0}^{\infty} f(t+ib) \ dt - \int_{0}^{b} f(it) i \ dt = 2 \pi i (0)=0 \ \ (1)$$$$\int_{0}^{\infty} e^{-a^{4}x^{4}} \ dx = \frac{1}{4a} \int_{0}^{\infty} e^{-u} u^{1/4-1} \ du = \frac{1}{4a} \Gamma \left(\frac{1}{4} \right) $$$$\Big| \int_{0}^{b} f(R+it) i \ dt \Big| \le \int_{0}^{b} \Big| e^{-a^{4}(R+it)^{4}} \Big| \ dt = e^{-a^{4}R^{4}} \int_{0}^{b} e^{6a^{4}R^{2}t^{2}} e^{-a^{4}t^{4}} \ dt$$

$$ < e^{-a^{4} R^{4}} \int_{0}^{b} e^{6a^{4} R^{2} b^{2}} e^{-a^{4}b^{4}} \ dt = b e^{-a^{4}R^{2}(R^{2}-6b^{2})} e^{-a^{4}b^{4}} \to 0 \ \text{as} \ R \to \infty$$$$ \int_{0}^{\infty} f(t+ib) \ dt = e^{-a^{4}b^{4}} \int_{0}^{\infty} \exp \Big(-a^{4}(t^{4}+4it^{3}b-6t^{2}b^{2}-4itb^{3}) \Big) \ dt$$$$ \int_{o}^{b} f(it) \ dt = i \int_{0}^{b}e^{-a^{4}t^{4}} \ dt $$Now equate the real parts on both sides of (1).$$ \frac{1}{4a} \Gamma \left(\frac{1}{4} \right) - e^{-a^{4}b^{4}} \int_{0}^{\infty} e^{-a^{4}t^{4} -6a^{4}t^{2}b^{2}} \cos \Big(4a^{4}t^{3}b - 4a^{4}tb^{3} \Big) \ dt = 0 $$

$$ \implies \int_{0}^{\infty} e^{-a^{4}t^{2}(t^{2}-6b^{2})} \cos \Big(4a^{4}bt(t^{2}-b^{2}) \Big) \ dx = \frac{e^{a^{4}b^{4}}}{4a} \Gamma \left( \frac{1}{4} \right) $$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top