Evaluating an Integral with Exponential Factors

Click For Summary

Discussion Overview

The discussion revolves around evaluating the integral $$\int_{0}^{\infty} e^{-a^{4}x^{2}(x^{2}-6b^{2})} \cos \Big(4a^{4}bx(x^{2}-b^{2}) \Big) \ dx$$ for parameters $a > 0$ and $b \ge 0$. The focus is on the mathematical techniques and approaches used to derive the result, including contour integration and properties of the Gamma function.

Discussion Character

  • Mathematical reasoning
  • Technical explanation

Main Points Raised

  • One participant presents the integral to be evaluated and suggests it equals $\frac{e^{a^{4}b^{4}}}{4a} \Gamma \left( \frac{1}{4} \right)$.
  • Another participant provides hints to guide the evaluation process without revealing complete solutions.
  • A detailed contour integration approach is introduced, defining a function $f(z) = e^{-a^{4}z^{4}}$ and outlining the integration around a rectangular contour.
  • The contour integration leads to an equation involving the integral of $f(z)$ along different paths, ultimately relating to the original integral.
  • Participants discuss the limit behavior of certain integrals as $R \to \infty$, indicating that some terms vanish under specific conditions.
  • The real parts of the integrals are equated to derive the desired result, reinforcing the connection between the evaluated integral and the Gamma function.

Areas of Agreement / Disagreement

Participants appear to agree on the use of contour integration and the steps involved in the evaluation process. However, there is no explicit consensus on the correctness of the proposed solution or the hints provided, as the discussion remains exploratory.

Contextual Notes

The discussion includes complex mathematical steps and assumptions about the behavior of integrals at infinity, which may not be fully resolved or universally accepted among participants.

polygamma
Messages
227
Reaction score
0
Show that for $a >0$ and $b \ge 0$,

$$\int_{0}^{\infty} e^{-a^{4}x^{2}(x^{2}-6b^{2})} \cos \Big(4a^{4}bx(x^{2}-b^{2}) \Big) \ dx = \frac{e^{a^{4}b^{4}}}{4a} \Gamma \left( \frac{1}{4} \right) $$
 
Physics news on Phys.org
Hint:

Integrate $ \displaystyle f(z)=e^{-a^{4}z^{4}}$ around the appropriate rectangular contour.
 
Hint 2:

Integrate $ \displaystyle e^{-a^{4}z^{4}}$ around a rectangle with vertices at $z=0, z= \infty, z= \infty + ib$, and $z=ib$, and notice that the integral along the left side of the rectangle is purely imaginary and that the integral along the right side of the rectangle vanishes.
 
Let $f(z) = e^{-a^{4}z^{4}}$ and integrate around a rectangle with vertices at $z= 0, z = \infty, z=\infty+ib$, and $z= ib$.Then going around the contour counterclockwise we have

$$\int_{0}^{\infty} e^{-a^{4}x^{4}} \ dx + \lim_{R \to \infty} \int_{0}^{b} f(R + it) \ i dt - \int_{0}^{\infty} f(t+ib) \ dt - \int_{0}^{b} f(it) i \ dt = 2 \pi i (0)=0 \ \ (1)$$$$\int_{0}^{\infty} e^{-a^{4}x^{4}} \ dx = \frac{1}{4a} \int_{0}^{\infty} e^{-u} u^{1/4-1} \ du = \frac{1}{4a} \Gamma \left(\frac{1}{4} \right) $$$$\Big| \int_{0}^{b} f(R+it) i \ dt \Big| \le \int_{0}^{b} \Big| e^{-a^{4}(R+it)^{4}} \Big| \ dt = e^{-a^{4}R^{4}} \int_{0}^{b} e^{6a^{4}R^{2}t^{2}} e^{-a^{4}t^{4}} \ dt$$

$$ < e^{-a^{4} R^{4}} \int_{0}^{b} e^{6a^{4} R^{2} b^{2}} e^{-a^{4}b^{4}} \ dt = b e^{-a^{4}R^{2}(R^{2}-6b^{2})} e^{-a^{4}b^{4}} \to 0 \ \text{as} \ R \to \infty$$$$ \int_{0}^{\infty} f(t+ib) \ dt = e^{-a^{4}b^{4}} \int_{0}^{\infty} \exp \Big(-a^{4}(t^{4}+4it^{3}b-6t^{2}b^{2}-4itb^{3}) \Big) \ dt$$$$ \int_{o}^{b} f(it) \ dt = i \int_{0}^{b}e^{-a^{4}t^{4}} \ dt $$Now equate the real parts on both sides of (1).$$ \frac{1}{4a} \Gamma \left(\frac{1}{4} \right) - e^{-a^{4}b^{4}} \int_{0}^{\infty} e^{-a^{4}t^{4} -6a^{4}t^{2}b^{2}} \cos \Big(4a^{4}t^{3}b - 4a^{4}tb^{3} \Big) \ dt = 0 $$

$$ \implies \int_{0}^{\infty} e^{-a^{4}t^{2}(t^{2}-6b^{2})} \cos \Big(4a^{4}bt(t^{2}-b^{2}) \Big) \ dx = \frac{e^{a^{4}b^{4}}}{4a} \Gamma \left( \frac{1}{4} \right) $$
 

Similar threads

  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K