Evaluating several powers of ##x## from a given equation

  • Thread starter Thread starter brotherbobby
  • Start date Start date
  • Tags Tags
    Exponent Index
AI Thread Summary
The discussion centers on evaluating the expression x^(x^(x^6))^(√3) given that x^(2x^6) = 3. Participants express confusion over the interpretation of the equation, debating whether it should be read as x^(2(x^6)) = 3 or x^((2x)^6) = 3. There is a consensus that the former interpretation is the correct one, aligning with common mathematical conventions. The ambiguity in the problem statement leads to differing opinions on how to proceed with the evaluation. Clarification on the correct interpretation is essential for accurate problem-solving.
brotherbobby
Messages
749
Reaction score
169
Homework Statement
If ##\quad\boldsymbol{\displaystyle x^{\displaystyle 2x^{\displaystyle 6}}=3}##, evaluate ##\quad\boldsymbol{\left(x^{\displaystyle x^{\displaystyle x^{\displaystyle 6}}}\right)^{\displaystyle\sqrt 3} = ?}##
Relevant Equations
1. ##a^m \cdot a^n = a^{m\cdot n}##
2. ##\left(a^m\right)^n = a^{mn}##.
3. If ##a^x=b\Rightarrow x\log a=\log b\quad \text{to any base}##

(I can't think of anything else given the little I was able to do in my way of an ##\text{attempt}##.)
Problem statement : If ##\boldsymbol{\displaystyle x^{\displaystyle 2x^{\displaystyle 6}}=3}##, evaluate ##\boldsymbol{\left(x^{\displaystyle x^{\displaystyle x^{\displaystyle 6}}}\right)^{\displaystyle\sqrt 3} = ?}##.

Attempt : I copy and paste my attempt using Autodesk Sketchbook##^{\circledR}##. I hope I am not violating anything.

1666871784349.png


Doubt : If only I could evaluate ##x##, or so it would seem. Note I have an irrational power ##^{\sqrt 3}## to negotiate with as well.

A help or a hint would be welcome.
 
Physics news on Phys.org
You need to be carfeul. $$x^{x^{x^6}} = x^{(x^{x^6})} = x^{(x^{(x^6)})}$$
 
  • Like
Likes topsquark and pbuk
brotherbobby said:
Homework Statement:: If ##\quad\boldsymbol{\displaystyle x^{\displaystyle 2x^{\displaystyle 6}}=3}##, evaluate ##\quad\boldsymbol{\left(x^{\displaystyle x^{\displaystyle x^{\displaystyle 6}}}\right)^{\displaystyle\sqrt 3} = ?}##
I observe
x=3^{\frac{1}{6}}
satisfies "If ...,".

Say
x^6=y
y^{2y/6}=3
y\ln y=3\ln 3
y=3
x=3^{\frac{1}{6}}
 
Last edited:
  • Like
Likes topsquark and SammyS
anuttarasammyak said:
I observe
x=3^{\frac{1}{6}}
satisfies "If ...,".
If ##x^{(2(x^6))} = 3## but not if ##x^{((2x)^6)} = 3##. The problem statement is ambiguous.
 
DrClaude said:
If ##x^{(2(x^6))} = 3## but not if ##x^{((2x)^6)} = 3##. The problem statement is ambiguous.
It's not much different from ##e^{-\frac 1 2 x^2}##, which is unambiguous.
 
PeroK said:
It's not much different from ##e^{-\frac 1 2 x^2}##, which is unambiguous.
The thing is I read the problem as ##x^{(2(x^6))} = 3## (as in your example) but the OP as ##x^{((2x)^6)} = 3##. So which is it?
 
DrClaude said:
The thing is I read the problem as ##x^{(2(x^6))} = 3## (as in your example) but the OP as ##x^{((2x)^6)} = 3##. So which is it?
The convention is definitely the former. ##e^{kx^2}## being the example to bear in mind.

The OP has misinterpreted both expressions, I think.
 
  • Like
Likes DrClaude
Back
Top