MHB Evaluating $\sum_{k\geq 1}\frac{\cos \left(\frac{\pi k}{2} \right)}{k^2}$

  • Thread starter Thread starter alyafey22
  • Start date Start date
AI Thread Summary
The discussion centers on evaluating the series $$\sum_{k\geq 1}\frac{\cos \left(\frac{\pi k}{2} \right)}{k^2}$$, which simplifies to $$-\frac{\pi^2}{48}$$. Participants reference Fourier series and Clausen functions to derive closed forms for similar series. The general result for $$\sum_{k\ge 1}\frac{\cos k\theta}{k^2}$$ is established as $$\frac{\pi^2}{6}-\frac{\pi\theta}{2}+\frac{\theta^2}{4}$$. This approach highlights how complex analysis can simplify seemingly complex series evaluations. The conversation emphasizes the utility of these mathematical tools in deriving results efficiently.
alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Evaluate the following
$$\sum_{k\geq 1}\frac{\cos \left(\frac{\pi k}{2} \right)}{k^2}$$​
 
Mathematics news on Phys.org
[sp]It looks like part of the Fourier series for $$x(\pi-x)$$ at $$x=\pi/4$$

So I'm getting $$\pi/4(\pi-\pi/4)=\pi^2/6-S$$.

Leading to S=$$-\pi^2/48$$...?

Bit of a cheat really. [/sp]
 
ZaidAlyafey said:
Evaluate the following
$$\sum_{k\geq 1}\frac{\cos \left(\frac{\pi k}{2} \right)}{k^2}$$​

It is relatively easy...

$\displaystyle \sum_{k = 1}^{\infty} \frac{\cos (\frac{\pi k}{2})}{k^{2}} = - \frac {1}{4}\ (1 - \frac{1}{4} + \frac{1}{9} - \frac{1}{16} + ...) = - \frac{\pi^{2}}{48}$

Kind regards

$\chi$ $\sigma$
 
ZaidAlyafey said:
Evaluate the following
$$\sum_{k\geq 1}\frac{\cos \left(\frac{\pi k}{2} \right)}{k^2}$$​
Hello Z! (Sun) Nice little problem there...

I hope no one minds the bump, but there's a general closed form for this series... Define the second order Clausen functions as follows:$$\text{Cl}_2(\theta)=-\int_0^{\theta}\log\Biggr|2\sin\frac{x}{2}\Biggr| \,dx=\sum_{k=1}^{\infty}\frac{\sin k\theta}{k^2}$$

$$\text{Sl}_2(\theta)=\sum_{k=1}^{\infty}\frac{\cos k\theta}{k^2}$$[N.B. that integral definition holds without use of the absolute value sign within the range $$0 < \theta < 2\pi\,$$]

Now we convert the CL-integral into complex exponential form

$$\text{Cl}_2(\theta)=-\int_0^{\theta}\log\left(2\sin\frac{x}{2}\right)\,dx=-\int_0^{\theta}\log\left[2\left(\frac{e^{ix/2}-e^{-ix/2}}{2i}\right)\right]\,dx=$$

$$-\int_0^{\theta}\log\left(\frac{1-e^{-ix}}{ie^{-ix/2}}\right)\,dx=$$

$$\int_0^{\theta}\left(\log i-\frac{ix}{2}\right)\,dx-\int_0^{\theta}\log(1-e^{-x})\,dx=$$

$$\frac{\pi i\theta}{2}-\frac{i\theta^2}{4}-\int_0^{\theta}\log(1-e^{-ix})\,dx$$Now we expand the complex logarithm within the integrand as a power series:

$$\log(1-z)=-\sum_{k=0}^{\infty}\frac{z^k}{k}$$

$$\Rightarrow$$

$$\int_0^{\theta}\log(1-e^{-ix})\,dx=-\sum_{k=0}^{\infty}\frac{1}{k}\int_0^{\theta}e^{-ikx}\,dx=$$

$$-\sum_{k=0}^{\infty}\frac{1}{k}\int_0^{\theta}(\cos x-i \sin x)^{k}\,dx=-\sum_{k=0}^{\infty}\frac{1}{k}\int_0^{ \theta}(\cos kx-i \sin kx)\,dx=$$

$$-\sum_{k=0}^{\infty}\frac{1}{k}\Biggr[\frac{1}{k}\left(\sin kx+i \cos kx\right)\Biggr]_0^{\theta}=$$

$$-\sum_{k=0}^{\infty}\frac{1}{k}\Biggr[\frac{1}{k}\left(\sin k\theta+i \cos k\theta-i\right)\Biggr]=$$

$$-\sum_{k=0}^{\infty}\frac{\sin k\theta}{k^2}-i\sum_{k=0}^{\infty}\frac{\cos k\theta}{k^2}+i\sum_{k=0}^{\infty}\frac{1}{k^2}=$$

$$-\text{Cl}_2(\theta)-i\text{Sl}_2(\theta)+i\zeta(2)=-\text{Cl}_2(\theta)-i\text{Sl}_2(\theta)+\frac{i\pi^2}{6}$$Combining this with our earlier results, and equating the imaginary parts to zero, we deduce that

$$\text{Sl}_2(\theta)=\frac{\pi^2}{6}-\frac{\pi\theta}{2}+\frac{\theta^2}{4}$$
Or, equivalently...$$\sum_{k\ge 1}\frac{\cos k\theta}{k^2}= \frac{\pi^2}{6}-\frac{\pi\theta}{2}+\frac{\theta^2}{4}\, .\, \Box$$-------------------------------------------

For $$m\in \mathbb{N}^+\,$$, all series of the form$$\text{Sl}_{2m}(\theta)=\sum_{k=0}^{\infty}\frac{ \cos k\theta}{k^{2m}}$$

$$\text{Sl}_{2m+1}(\theta)=\sum_{k=0}^{\infty}\frac{\sin k\theta}{k^{2m}}$$Are expressible in closed form, as a polynomial in $$\theta\,$$ and $$\pi\,$$
 
Nice , generalization !
 
Thanks Z! :DIt can make tricky-looking results quite easy. Such as$$\sum_{k=1}^{\infty}\frac{\cos (\pi k/10)}{k^2}=\frac{\pi^2}{6}-\frac{\pi}{4}\sqrt{\frac{5+\sqrt{5}}{2}}+\frac{5+ \sqrt{5}}{16}$$
 
DreamWeaver said:
Thanks Z! :DIt can make tricky-looking results quite easy. Such as$$\sum_{k=1}^{\infty}\frac{\cos (\pi k/10)}{k^2}=\frac{\pi^2}{6}-\frac{\pi}{4}\sqrt{\frac{5+\sqrt{5}}{2}}+\frac{5+ \sqrt{5}}{16}$$
Oops! :o:o:o

Sorry folks... Wasn't really concentrating yesterday... I put in value of $$\cos \theta$$ rather than the argument, $$\theta$$...[hangs head in shame]
 
Back
Top