Evaluating $\sum_{k\geq 1}\frac{\cos \left(\frac{\pi k}{2} \right)}{k^2}$

  • Context: MHB 
  • Thread starter Thread starter alyafey22
  • Start date Start date
Click For Summary
SUMMARY

The evaluation of the series $$\sum_{k\geq 1}\frac{\cos \left(\frac{\pi k}{2} \right)}{k^2}$$ results in the closed form $$-\frac{\pi^2}{48}$$. This conclusion is derived using the second order Clausen function, denoted as $$\text{Sl}_2(\theta)$$, which provides a general formula for series of this type. The series can also be expressed in terms of the Riemann zeta function, specifically $$\zeta(2) = \frac{\pi^2}{6}$$. The discussion highlights the utility of complex analysis in deriving results for trigonometric series.

PREREQUISITES
  • Understanding of Fourier series and their applications
  • Familiarity with Clausen functions and their definitions
  • Knowledge of complex analysis, particularly complex logarithms
  • Basic understanding of the Riemann zeta function, specifically $$\zeta(2)$$
NEXT STEPS
  • Study the properties and applications of Clausen functions in series evaluation
  • Learn about the derivation and implications of the Riemann zeta function
  • Explore advanced techniques in complex analysis, focusing on logarithmic integrals
  • Investigate other series of the form $$\sum_{k=1}^{\infty}\frac{\cos(k\theta)}{k^2}$$ and their closed forms
USEFUL FOR

Mathematicians, students of advanced calculus, and researchers in mathematical analysis who are interested in series evaluation and the application of complex analysis in deriving closed forms for trigonometric series.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Evaluate the following
$$\sum_{k\geq 1}\frac{\cos \left(\frac{\pi k}{2} \right)}{k^2}$$​
 
Physics news on Phys.org
[sp]It looks like part of the Fourier series for $$x(\pi-x)$$ at $$x=\pi/4$$

So I'm getting $$\pi/4(\pi-\pi/4)=\pi^2/6-S$$.

Leading to S=$$-\pi^2/48$$...?

Bit of a cheat really. [/sp]
 
ZaidAlyafey said:
Evaluate the following
$$\sum_{k\geq 1}\frac{\cos \left(\frac{\pi k}{2} \right)}{k^2}$$​

It is relatively easy...

$\displaystyle \sum_{k = 1}^{\infty} \frac{\cos (\frac{\pi k}{2})}{k^{2}} = - \frac {1}{4}\ (1 - \frac{1}{4} + \frac{1}{9} - \frac{1}{16} + ...) = - \frac{\pi^{2}}{48}$

Kind regards

$\chi$ $\sigma$
 
ZaidAlyafey said:
Evaluate the following
$$\sum_{k\geq 1}\frac{\cos \left(\frac{\pi k}{2} \right)}{k^2}$$​
Hello Z! (Sun) Nice little problem there...

I hope no one minds the bump, but there's a general closed form for this series... Define the second order Clausen functions as follows:$$\text{Cl}_2(\theta)=-\int_0^{\theta}\log\Biggr|2\sin\frac{x}{2}\Biggr| \,dx=\sum_{k=1}^{\infty}\frac{\sin k\theta}{k^2}$$

$$\text{Sl}_2(\theta)=\sum_{k=1}^{\infty}\frac{\cos k\theta}{k^2}$$[N.B. that integral definition holds without use of the absolute value sign within the range $$0 < \theta < 2\pi\,$$]

Now we convert the CL-integral into complex exponential form

$$\text{Cl}_2(\theta)=-\int_0^{\theta}\log\left(2\sin\frac{x}{2}\right)\,dx=-\int_0^{\theta}\log\left[2\left(\frac{e^{ix/2}-e^{-ix/2}}{2i}\right)\right]\,dx=$$

$$-\int_0^{\theta}\log\left(\frac{1-e^{-ix}}{ie^{-ix/2}}\right)\,dx=$$

$$\int_0^{\theta}\left(\log i-\frac{ix}{2}\right)\,dx-\int_0^{\theta}\log(1-e^{-x})\,dx=$$

$$\frac{\pi i\theta}{2}-\frac{i\theta^2}{4}-\int_0^{\theta}\log(1-e^{-ix})\,dx$$Now we expand the complex logarithm within the integrand as a power series:

$$\log(1-z)=-\sum_{k=0}^{\infty}\frac{z^k}{k}$$

$$\Rightarrow$$

$$\int_0^{\theta}\log(1-e^{-ix})\,dx=-\sum_{k=0}^{\infty}\frac{1}{k}\int_0^{\theta}e^{-ikx}\,dx=$$

$$-\sum_{k=0}^{\infty}\frac{1}{k}\int_0^{\theta}(\cos x-i \sin x)^{k}\,dx=-\sum_{k=0}^{\infty}\frac{1}{k}\int_0^{ \theta}(\cos kx-i \sin kx)\,dx=$$

$$-\sum_{k=0}^{\infty}\frac{1}{k}\Biggr[\frac{1}{k}\left(\sin kx+i \cos kx\right)\Biggr]_0^{\theta}=$$

$$-\sum_{k=0}^{\infty}\frac{1}{k}\Biggr[\frac{1}{k}\left(\sin k\theta+i \cos k\theta-i\right)\Biggr]=$$

$$-\sum_{k=0}^{\infty}\frac{\sin k\theta}{k^2}-i\sum_{k=0}^{\infty}\frac{\cos k\theta}{k^2}+i\sum_{k=0}^{\infty}\frac{1}{k^2}=$$

$$-\text{Cl}_2(\theta)-i\text{Sl}_2(\theta)+i\zeta(2)=-\text{Cl}_2(\theta)-i\text{Sl}_2(\theta)+\frac{i\pi^2}{6}$$Combining this with our earlier results, and equating the imaginary parts to zero, we deduce that

$$\text{Sl}_2(\theta)=\frac{\pi^2}{6}-\frac{\pi\theta}{2}+\frac{\theta^2}{4}$$
Or, equivalently...$$\sum_{k\ge 1}\frac{\cos k\theta}{k^2}= \frac{\pi^2}{6}-\frac{\pi\theta}{2}+\frac{\theta^2}{4}\, .\, \Box$$-------------------------------------------

For $$m\in \mathbb{N}^+\,$$, all series of the form$$\text{Sl}_{2m}(\theta)=\sum_{k=0}^{\infty}\frac{ \cos k\theta}{k^{2m}}$$

$$\text{Sl}_{2m+1}(\theta)=\sum_{k=0}^{\infty}\frac{\sin k\theta}{k^{2m}}$$Are expressible in closed form, as a polynomial in $$\theta\,$$ and $$\pi\,$$
 
Nice , generalization !
 
Thanks Z! :DIt can make tricky-looking results quite easy. Such as$$\sum_{k=1}^{\infty}\frac{\cos (\pi k/10)}{k^2}=\frac{\pi^2}{6}-\frac{\pi}{4}\sqrt{\frac{5+\sqrt{5}}{2}}+\frac{5+ \sqrt{5}}{16}$$
 
DreamWeaver said:
Thanks Z! :DIt can make tricky-looking results quite easy. Such as$$\sum_{k=1}^{\infty}\frac{\cos (\pi k/10)}{k^2}=\frac{\pi^2}{6}-\frac{\pi}{4}\sqrt{\frac{5+\sqrt{5}}{2}}+\frac{5+ \sqrt{5}}{16}$$
Oops! :o:o:o

Sorry folks... Wasn't really concentrating yesterday... I put in value of $$\cos \theta$$ rather than the argument, $$\theta$$...[hangs head in shame]
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K