Evaluation of Indefinite Integral

Click For Summary
SUMMARY

The integral \(\displaystyle \int\frac{\sqrt{\cos 2x}}{\sin x}dx\) can be solved by breaking it into two parts: \(\displaystyle 2\int \frac{dt}{\sqrt{2t^2-1}} + \int \frac{dt}{(t^2-1)\sqrt{2t^2-1}}\). The first part evaluates to \(\displaystyle \sqrt{2}\log|\sqrt{2}t + \sqrt{2t^2-1}| + C\) using the substitution \(u = \cosh^{-1}(\sqrt{2} t)\). The second part requires partial fraction decomposition and results in a more complex logarithmic expression. The final solution combines these results into a comprehensive expression for the indefinite integral.

PREREQUISITES
  • Understanding of integral calculus and indefinite integrals
  • Familiarity with trigonometric identities and substitutions
  • Knowledge of logarithmic functions and their properties
  • Experience with partial fraction decomposition techniques
NEXT STEPS
  • Study the method of integration by substitution, particularly hyperbolic functions
  • Learn about partial fraction decomposition in detail
  • Explore advanced techniques for solving integrals involving trigonometric functions
  • Practice evaluating integrals using logarithmic identities and properties
USEFUL FOR

Mathematics students, calculus instructors, and anyone interested in advanced integration techniques will benefit from this discussion.

juantheron
Messages
243
Reaction score
1
Calculation of \(\displaystyle \int\frac{\sqrt{\cos 2x}}{\sin x}dx\)

**My Try \(\displaystyle :: I = \int\frac{\sqrt{\cos 2x}}{\sin x}dx = \int\frac{\cos 2x}{\sin x\cdot \sqrt{\cos 2x}}\cdot \frac{\sin x}{\sin x}dx = \int\frac{\sqrt{2\cos^2 x-1}}{\left(1-\cos^2 x\right)\cdot \sqrt{2\cos^2 x-1}}\cdot \sin x dx\)Now Let \(\displaystyle \cos x = t\) and \(\displaystyle \sin xdx = -dt\)So Integral \(\displaystyle I = \int\frac{\left(2t^2-1\right)}{(t^2-1)\cdot \sqrt{2t^2-1}}dt\)

Now I did not Understand How can i proceed further.

Help me for solving above Question.

Thanks
 
Physics news on Phys.org
jacks said:
Calculation of \(\displaystyle \int\frac{\sqrt{\cos 2x}}{\sin x}dx\)

**My Try \(\displaystyle :: I = \int\frac{\sqrt{\cos 2x}}{\sin x}dx = \int\frac{\cos 2x}{\sin x\cdot \sqrt{\cos 2x}}\cdot \frac{\sin x}{\sin x}dx = \int\frac{\sqrt{2\cos^2 x-1}}{\left(1-\cos^2 x\right)\cdot \sqrt{2\cos^2 x-1}}\cdot \sin x dx\)Now Let \(\displaystyle \cos x = t\) and \(\displaystyle \sin xdx = -dt\)So Integral \(\displaystyle I = \int\frac{\left(2t^2-1\right)}{(t^2-1)\cdot \sqrt{2t^2-1}}dt\)

Now I did not Understand How can i proceed further.

Help me for solving above Question.

Thanks

You're on the right track. Let's continue from where you left off. Break up the integral as

$\displaystyle 2\int \frac{dt}{\sqrt{2t^2-1}} + \int \frac{dt}{(t^2-1)\sqrt{2t^2-1}}$.

The first integral is

$\displaystyle \sqrt{2}\log|\sqrt{2}t + \sqrt{2t^2-1}| + C$,

which can be obtained by using the $u$-substitution $u = \cosh^{-1}(\sqrt{2} t)$.

The second integral takes more work. Using the partial fraction decomposition

$\displaystyle \frac{2}{t^2-1} = \frac{1}{t-1} - \frac{1}{t+1}$

we write the second integral as

$\displaystyle \frac{1}{2}\left(\int \frac{dt}{(t-1)\sqrt{t^2-1}} - \int \frac{dt}{(t+1)\sqrt{t^2-1}}\right)$.

To evalute these integrals, we'll consider a general quadratic $R(u) = R_{a, b, c}(u) := au^2 + bu + c$ and use the formula

$\displaystyle (*) \int \frac{du}{u\sqrt{R}} = -\frac{1}{\sqrt{c}}\log\left|\frac{\sqrt{R} + \sqrt{c}}{u} + \frac{b}{2\sqrt{c}}\right| + C, \quad \text{$c > 0$} $.

This formula may be derived by using the substitution $v = \frac{1}{u}$ and the formula

$\displaystyle \int \frac{dv}{\sqrt{R_{c, b, a}}} = \frac{1}{\sqrt{c}}\log|2cv + b + 2\sqrt{c}\sqrt{R_{c, b, a}}| + C$.

With formula (*) at hand, we evaluate

$\displaystyle \int \frac{dt}{(t-1)\sqrt{2t^2-1}}$

$\displaystyle = -\log\left|\frac{\sqrt{R_{1,2,1/2}(t-1)} + \sqrt{\frac{1}{2}}}{t-1} + \sqrt{2}\right| + C$

$\displaystyle = -\log\left|\frac{\sqrt{t^2-\frac{1}{2}} + \sqrt{\frac{1}{2}}}{t-1} + \sqrt{2}\right| + C$

$\displaystyle = -\log\left|\frac{\sqrt{2t^2-1}+2t-1}{t-1}\right| + C$.

By a similar analysis,

$\displaystyle \int \frac{dt}{(t+1)\sqrt{2t^2-1}} = -\log\left|\frac{\sqrt{2t^2-1}-2t-1}{t+1}\right| + C$.

Thus

$\displaystyle \int \frac{dt}{(t^2-1)\sqrt{2t^2-1}}$

$\displaystyle = \frac{1}{2}\log\left|\frac{\sqrt{2t^2-1}-2t-1}{\sqrt{2t^2-1}-2t+1}\right| - \frac{1}{2}\log\left|\frac{t+1}{t-1}\right| + C$

$\displaystyle =\frac{1}{2}\log\left|\frac{\sqrt{\cos(2x)} - 2\cos(x) - 1}{\sqrt{\cos(2x)} - 2\cos(x) + 1}\right| + \frac{1}{2}\log\left|\frac{\cos(x) + 1}{\cos(x) - 1}\right|+C$.

At last, we obtain

$\displaystyle \int \frac{\sqrt{\cos(2x)}}{\sin(x)}\, dx$

$\displaystyle = \sqrt{2}\log|\sqrt{2}\cos(x) + \cos(2x)| + \frac{1}{2}\log\left|\frac{\sqrt{\cos(2x)} - 2\cos(x) - 1}{\sqrt{\cos(2x)} - 2\cos(x) + 1}\right| - \frac{1}{2}\log\left|\frac{\cos(x) + 1}{\cos(x) - 1}\right| + C$.
 
Last edited:
I just wanted to remark that in the expression just above the phrase "At last, we obtain," there should be an $=$ sign to the left and a $+C$ to the right.
 
Euge said:
I just wanted to remark that in the expression just above the phrase "At last, we obtain," there should be an $=$ sign to the left and a $+C$ to the right.

I just had to fix such a beautiful post. :D
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K