MHB Ewaz's question at Yahoo Answers regarding a Bernoulli Equation

AI Thread Summary
The discussion revolves around solving the Bernoulli differential equation y' + xy = y². The solution involves transforming the equation by dividing through by y² and using the substitution v = y⁻¹, leading to a linear ordinary differential equation. An integrating factor, e^(-x²/2), is applied to facilitate solving the equation. The final result for y is expressed as y(x) = 1/[ -e^(x²/2) ∫ e^(-x²/2) dx]. This thorough approach highlights the steps necessary to arrive at the solution for the given differential equation.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Solve this Differential Equations problem? (Bernoulli's)?

y' + xy = y2

answer should be

y = 1/[ -e^(x2/2) ∫ e^(-x2/2) dx]

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello Ewaz,

We are given to solve:

$$\frac{dy}{dx}+xy=y^2$$

Dividing through by $$y^2$$ (observing we are losing the trivial solution $y\equiv0$) we obtain:

$$y^{-2}\frac{dy}{dx}+xy^{-1}=1$$

We want to use the substitution:

$$v=y^{-1}$$

Differentiating with respect to $x$, we then obtain:

$$\frac{dv}{dx}=-y^{-2}\frac{dy}{dx}$$

And so our ODE becomes:

$$\frac{dv}{dx}-xv=-1$$

This is a linear ODE, and thus computing our integrating factor, we obtain:

$$\mu(x)=e^{-\int x\,dx}=e^{-\frac{x^2}{2}}$$

Multiplying the ODE by this factor, we obtain:

$$e^{-\frac{x^2}{2}}\frac{dv}{dx}-xe^{-\frac{x^2}{2}}v=-e^{-\frac{x^2}{2}}$$

Observing that the left side is not the differentiation of a product, we obtain:

$$\frac{d}{dx}\left(e^{-\frac{x^2}{2}}v \right)=-e^{-\frac{x^2}{2}}$$

Integrating with respect to $x$, there results:

$$\int\,d\left(e^{-\frac{x^2}{2}}v \right)=-\int e^{-\frac{x^2}{2}}\,dx$$

$$e^{-\frac{x^2}{2}}v=-\int e^{-\frac{x^2}{2}}\,dx$$

Multiplying through by $$e^{\frac{x^2}{2}}$$, we obtain:

$$v=-e^{\frac{x^2}{2}}\int e^{-\frac{x^2}{2}}\,dx$$

Back-substituting for $v$, we have:

$$\frac{1}{y}=-e^{\frac{x^2}{2}}\int e^{-\frac{x^2}{2}}\,dx$$

Inverting both sides, we the find:

$$y(x)=\frac{1}{-e^{\frac{x^2}{2}}\int e^{-\frac{x^2}{2}}\,dx}$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top