Exercise involving Dirac fields and Fermionic commutation relations

AI Thread Summary
The discussion focuses on deriving equations for fermions using Dirac fields and fermionic commutation relations. The user has successfully proven the first part of an exercise and is now attempting to apply similar reasoning to fermions, specifically regarding mode expansions and the creation of states. They express concern about the correctness of their approach, particularly in how they represent the state |p,r⟩ using both fermionic and antifermionic operators. A response clarifies that the user needs to account for the effects of both the fermion and antifermion states, indicating that separate calculations for each are necessary. The conversation emphasizes the importance of accurately distinguishing between fermionic and antifermionic states in the derivation process.
snypehype46
Messages
10
Reaction score
1
Homework Statement
Derive a similar equation for fermions
Relevant Equations
$$\psi(x) = \sum_s \int d\tilde{q} \left(a_s(q) u(q,s) e^{-iq \cdot x}+ b_s^\dagger(q) v(q,s) e^{iq \cdot x}\right)$$
I'm trying to the following exercise:
1620037584475.png

I've proven the first part and now I'm trying to do the same thing for fermions.
The formulas for the mode expansions are:
1620037669696.png


What I did was the following:

$$\begin{align*}
\sum_s \int d\tilde{q} \left(a_s(q) u(q,s) e^{-iq \cdot x}+ b_s^\dagger(q) v(q,s) e^{iq \cdot x}\right)|p,r\rangle = \\
\sum_s \int d\tilde{q} u(q,s) e^{-iq \cdot x} a_s(q) a^\dagger_r(p)|0\rangle +
\\ \sum_s \int d\tilde{q} v(q,s) e^{iq \cdot x} b_s^\dagger(q) b_r^\dagger(p) |0\rangle \\=
\sum_s \int d\tilde{q} u(q,s) e^{-iq \cdot x} \left( \delta_{rs} \delta(q-p) - a_r^\dagger(p)a_s(q)\right)|0\rangle + \\
\sum_s \int d\tilde{q} v(q,s) e^{iq \cdot x} b_s^\dagger(q) b_r^\dagger(p) |0\rangle
\end{align*}
$$

In the first the integral and the sum vanish because the kronecker delta and the delta function pick out a specific value of q and s.
Then taking multiplying from the left by ##\langle 0 |## we get:

$$u(p,s)e^{-ip\cdot x} \langle 0 | 0 \rangle + 0 = u(p,s)e^{-ip\cdot x}$$

where for the first term I've used the fact an annihilation operators gives zero acting on the vacuum and for the second term I've used the fact that:

$$\left(\langle 0 |b_s(q)\right)^\dagger = 0$$

Is this the correct way of proceeding? One thing I'm unsure is what I did for the writing of the state ##|p,r\rangle## is correct, because as you can see I "created" the state using two different operators in the same line: ##a_r^\dagger(p,r) |0 \rangle## and ##b_r^\dagger(p,r) |0 \rangle##.
 
Physics news on Phys.org
snypehype46 said:
Homework Statement:: Derive a similar equation for fermions
Relevant Equations:: $$\psi(x) = \sum_s \int d\tilde{q} \left(a_s(q) u(q,s) e^{-iq \cdot x}+ b_s^\dagger(q) v(q,s) e^{iq \cdot x}\right)$$

I'm trying to the following exercise:
View attachment 282408
I've proven the first part and now I'm trying to do the same thing for fermions.
The formulas for the mode expansions are:
View attachment 282409

What I did was the following:

$$\begin{align*}
\sum_s \int d\tilde{q} \left(a_s(q) u(q,s) e^{-iq \cdot x}+ b_s^\dagger(q) v(q,s) e^{iq \cdot x}\right)|p,r\rangle = \\
\sum_s \int d\tilde{q} u(q,s) e^{-iq \cdot x} a_s(q) a^\dagger_r(p)|0\rangle +
\\ \sum_s \int d\tilde{q} v(q,s) e^{iq \cdot x} b_s^\dagger(q) b_r^\dagger(p) |0\rangle \\=
\sum_s \int d\tilde{q} u(q,s) e^{-iq \cdot x} \left( \delta_{rs} \delta(q-p) - a_r^\dagger(p)a_s(q)\right)|0\rangle + \\
\sum_s \int d\tilde{q} v(q,s) e^{iq \cdot x} b_s^\dagger(q) b_r^\dagger(p) |0\rangle
\end{align*}
$$

In the first the integral and the sum vanish because the kronecker delta and the delta function pick out a specific value of q and s.
Then taking multiplying from the left by ##\langle 0 |## we get:

$$u(p,s)e^{-ip\cdot x} \langle 0 | 0 \rangle + 0 = u(p,s)e^{-ip\cdot x}$$

where for the first term I've used the fact an annihilation operators gives zero acting on the vacuum and for the second term I've used the fact that:

$$\left(\langle 0 |b_s(q)\right)^\dagger = 0$$

Is this the correct way of proceeding? One thing I'm unsure is what I did for the writing of the state ##|p,r\rangle## is correct, because as you can see I "created" the state using two different operators in the same line: ##a_r^\dagger(p,r) |0 \rangle## and ##b_r^\dagger(p,r) |0 \rangle##.
It's not quite right. You have to consider the effect of ##\psi## and its adjoint on both a fermion and an anti-fermion state (so essentially, you need four calculations). The fermion state is ##|p,r \rangle = a_r^\dagger(p,r) |0\rangle ## whereas the antifermion state is ##|p,r \rangle = b_r^\dagger(p,r) |0\rangle ##
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top