Exercise involving Dirac fields and Fermionic commutation relations

Click For Summary
The discussion focuses on deriving equations for fermions using Dirac fields and fermionic commutation relations. The user has successfully proven the first part of an exercise and is now attempting to apply similar reasoning to fermions, specifically regarding mode expansions and the creation of states. They express concern about the correctness of their approach, particularly in how they represent the state |p,r⟩ using both fermionic and antifermionic operators. A response clarifies that the user needs to account for the effects of both the fermion and antifermion states, indicating that separate calculations for each are necessary. The conversation emphasizes the importance of accurately distinguishing between fermionic and antifermionic states in the derivation process.
snypehype46
Messages
10
Reaction score
1
Homework Statement
Derive a similar equation for fermions
Relevant Equations
$$\psi(x) = \sum_s \int d\tilde{q} \left(a_s(q) u(q,s) e^{-iq \cdot x}+ b_s^\dagger(q) v(q,s) e^{iq \cdot x}\right)$$
I'm trying to the following exercise:
1620037584475.png

I've proven the first part and now I'm trying to do the same thing for fermions.
The formulas for the mode expansions are:
1620037669696.png


What I did was the following:

$$\begin{align*}
\sum_s \int d\tilde{q} \left(a_s(q) u(q,s) e^{-iq \cdot x}+ b_s^\dagger(q) v(q,s) e^{iq \cdot x}\right)|p,r\rangle = \\
\sum_s \int d\tilde{q} u(q,s) e^{-iq \cdot x} a_s(q) a^\dagger_r(p)|0\rangle +
\\ \sum_s \int d\tilde{q} v(q,s) e^{iq \cdot x} b_s^\dagger(q) b_r^\dagger(p) |0\rangle \\=
\sum_s \int d\tilde{q} u(q,s) e^{-iq \cdot x} \left( \delta_{rs} \delta(q-p) - a_r^\dagger(p)a_s(q)\right)|0\rangle + \\
\sum_s \int d\tilde{q} v(q,s) e^{iq \cdot x} b_s^\dagger(q) b_r^\dagger(p) |0\rangle
\end{align*}
$$

In the first the integral and the sum vanish because the kronecker delta and the delta function pick out a specific value of q and s.
Then taking multiplying from the left by ##\langle 0 |## we get:

$$u(p,s)e^{-ip\cdot x} \langle 0 | 0 \rangle + 0 = u(p,s)e^{-ip\cdot x}$$

where for the first term I've used the fact an annihilation operators gives zero acting on the vacuum and for the second term I've used the fact that:

$$\left(\langle 0 |b_s(q)\right)^\dagger = 0$$

Is this the correct way of proceeding? One thing I'm unsure is what I did for the writing of the state ##|p,r\rangle## is correct, because as you can see I "created" the state using two different operators in the same line: ##a_r^\dagger(p,r) |0 \rangle## and ##b_r^\dagger(p,r) |0 \rangle##.
 
Physics news on Phys.org
snypehype46 said:
Homework Statement:: Derive a similar equation for fermions
Relevant Equations:: $$\psi(x) = \sum_s \int d\tilde{q} \left(a_s(q) u(q,s) e^{-iq \cdot x}+ b_s^\dagger(q) v(q,s) e^{iq \cdot x}\right)$$

I'm trying to the following exercise:
View attachment 282408
I've proven the first part and now I'm trying to do the same thing for fermions.
The formulas for the mode expansions are:
View attachment 282409

What I did was the following:

$$\begin{align*}
\sum_s \int d\tilde{q} \left(a_s(q) u(q,s) e^{-iq \cdot x}+ b_s^\dagger(q) v(q,s) e^{iq \cdot x}\right)|p,r\rangle = \\
\sum_s \int d\tilde{q} u(q,s) e^{-iq \cdot x} a_s(q) a^\dagger_r(p)|0\rangle +
\\ \sum_s \int d\tilde{q} v(q,s) e^{iq \cdot x} b_s^\dagger(q) b_r^\dagger(p) |0\rangle \\=
\sum_s \int d\tilde{q} u(q,s) e^{-iq \cdot x} \left( \delta_{rs} \delta(q-p) - a_r^\dagger(p)a_s(q)\right)|0\rangle + \\
\sum_s \int d\tilde{q} v(q,s) e^{iq \cdot x} b_s^\dagger(q) b_r^\dagger(p) |0\rangle
\end{align*}
$$

In the first the integral and the sum vanish because the kronecker delta and the delta function pick out a specific value of q and s.
Then taking multiplying from the left by ##\langle 0 |## we get:

$$u(p,s)e^{-ip\cdot x} \langle 0 | 0 \rangle + 0 = u(p,s)e^{-ip\cdot x}$$

where for the first term I've used the fact an annihilation operators gives zero acting on the vacuum and for the second term I've used the fact that:

$$\left(\langle 0 |b_s(q)\right)^\dagger = 0$$

Is this the correct way of proceeding? One thing I'm unsure is what I did for the writing of the state ##|p,r\rangle## is correct, because as you can see I "created" the state using two different operators in the same line: ##a_r^\dagger(p,r) |0 \rangle## and ##b_r^\dagger(p,r) |0 \rangle##.
It's not quite right. You have to consider the effect of ##\psi## and its adjoint on both a fermion and an anti-fermion state (so essentially, you need four calculations). The fermion state is ##|p,r \rangle = a_r^\dagger(p,r) |0\rangle ## whereas the antifermion state is ##|p,r \rangle = b_r^\dagger(p,r) |0\rangle ##
 
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
27
Views
3K
Replies
18
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
10
Views
2K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K