Exercise involving Dirac fields and Fermionic commutation relations

Click For Summary
SUMMARY

This discussion focuses on deriving equations for fermions using Dirac fields and Fermionic commutation relations. The participant successfully demonstrated the mode expansion for fermions, utilizing the operators \(a_s(q)\) and \(b_s^\dagger(q)\). However, they were advised to consider both fermion and anti-fermion states, necessitating four calculations to fully address the problem. The correct fermion state is represented as \(|p,r \rangle = a_r^\dagger(p,r) |0\rangle\) and the anti-fermion state as \(|p,r \rangle = b_r^\dagger(p,r) |0\rangle\).

PREREQUISITES
  • Understanding of Dirac fields and their mode expansions
  • Fermionic commutation relations
  • Quantum field theory basics
  • Knowledge of annihilation and creation operators
NEXT STEPS
  • Study the derivation of fermionic states in quantum field theory
  • Learn about the implications of Fermionic statistics on particle interactions
  • Explore the role of the Dirac equation in particle physics
  • Investigate the properties of anti-fermions and their interactions
USEFUL FOR

Students and researchers in theoretical physics, particularly those focusing on quantum field theory, particle physics, and the mathematical foundations of fermionic systems.

snypehype46
Messages
10
Reaction score
1
Homework Statement
Derive a similar equation for fermions
Relevant Equations
$$\psi(x) = \sum_s \int d\tilde{q} \left(a_s(q) u(q,s) e^{-iq \cdot x}+ b_s^\dagger(q) v(q,s) e^{iq \cdot x}\right)$$
I'm trying to the following exercise:
1620037584475.png

I've proven the first part and now I'm trying to do the same thing for fermions.
The formulas for the mode expansions are:
1620037669696.png


What I did was the following:

$$\begin{align*}
\sum_s \int d\tilde{q} \left(a_s(q) u(q,s) e^{-iq \cdot x}+ b_s^\dagger(q) v(q,s) e^{iq \cdot x}\right)|p,r\rangle = \\
\sum_s \int d\tilde{q} u(q,s) e^{-iq \cdot x} a_s(q) a^\dagger_r(p)|0\rangle +
\\ \sum_s \int d\tilde{q} v(q,s) e^{iq \cdot x} b_s^\dagger(q) b_r^\dagger(p) |0\rangle \\=
\sum_s \int d\tilde{q} u(q,s) e^{-iq \cdot x} \left( \delta_{rs} \delta(q-p) - a_r^\dagger(p)a_s(q)\right)|0\rangle + \\
\sum_s \int d\tilde{q} v(q,s) e^{iq \cdot x} b_s^\dagger(q) b_r^\dagger(p) |0\rangle
\end{align*}
$$

In the first the integral and the sum vanish because the kronecker delta and the delta function pick out a specific value of q and s.
Then taking multiplying from the left by ##\langle 0 |## we get:

$$u(p,s)e^{-ip\cdot x} \langle 0 | 0 \rangle + 0 = u(p,s)e^{-ip\cdot x}$$

where for the first term I've used the fact an annihilation operators gives zero acting on the vacuum and for the second term I've used the fact that:

$$\left(\langle 0 |b_s(q)\right)^\dagger = 0$$

Is this the correct way of proceeding? One thing I'm unsure is what I did for the writing of the state ##|p,r\rangle## is correct, because as you can see I "created" the state using two different operators in the same line: ##a_r^\dagger(p,r) |0 \rangle## and ##b_r^\dagger(p,r) |0 \rangle##.
 
Physics news on Phys.org
snypehype46 said:
Homework Statement:: Derive a similar equation for fermions
Relevant Equations:: $$\psi(x) = \sum_s \int d\tilde{q} \left(a_s(q) u(q,s) e^{-iq \cdot x}+ b_s^\dagger(q) v(q,s) e^{iq \cdot x}\right)$$

I'm trying to the following exercise:
View attachment 282408
I've proven the first part and now I'm trying to do the same thing for fermions.
The formulas for the mode expansions are:
View attachment 282409

What I did was the following:

$$\begin{align*}
\sum_s \int d\tilde{q} \left(a_s(q) u(q,s) e^{-iq \cdot x}+ b_s^\dagger(q) v(q,s) e^{iq \cdot x}\right)|p,r\rangle = \\
\sum_s \int d\tilde{q} u(q,s) e^{-iq \cdot x} a_s(q) a^\dagger_r(p)|0\rangle +
\\ \sum_s \int d\tilde{q} v(q,s) e^{iq \cdot x} b_s^\dagger(q) b_r^\dagger(p) |0\rangle \\=
\sum_s \int d\tilde{q} u(q,s) e^{-iq \cdot x} \left( \delta_{rs} \delta(q-p) - a_r^\dagger(p)a_s(q)\right)|0\rangle + \\
\sum_s \int d\tilde{q} v(q,s) e^{iq \cdot x} b_s^\dagger(q) b_r^\dagger(p) |0\rangle
\end{align*}
$$

In the first the integral and the sum vanish because the kronecker delta and the delta function pick out a specific value of q and s.
Then taking multiplying from the left by ##\langle 0 |## we get:

$$u(p,s)e^{-ip\cdot x} \langle 0 | 0 \rangle + 0 = u(p,s)e^{-ip\cdot x}$$

where for the first term I've used the fact an annihilation operators gives zero acting on the vacuum and for the second term I've used the fact that:

$$\left(\langle 0 |b_s(q)\right)^\dagger = 0$$

Is this the correct way of proceeding? One thing I'm unsure is what I did for the writing of the state ##|p,r\rangle## is correct, because as you can see I "created" the state using two different operators in the same line: ##a_r^\dagger(p,r) |0 \rangle## and ##b_r^\dagger(p,r) |0 \rangle##.
It's not quite right. You have to consider the effect of ##\psi## and its adjoint on both a fermion and an anti-fermion state (so essentially, you need four calculations). The fermion state is ##|p,r \rangle = a_r^\dagger(p,r) |0\rangle ## whereas the antifermion state is ##|p,r \rangle = b_r^\dagger(p,r) |0\rangle ##
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
27
Views
3K
Replies
18
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
10
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K