What Is the General Solution to the Dirac Field Theory Equation?

Click For Summary
The discussion focuses on solving the Dirac equation, specifically the equation $$\not p = \gamma^\mu p_\mu = m$$. The participants clarify that the equation is Lorentz invariant and can be analyzed in a reference frame where the momentum vector is zero, simplifying the equation to $$\gamma^0 p_0 = m$$. A key point of confusion arises regarding the transformation of this equation into $$(p_0 - m)^2 = (p_0 + m)^2 = 0$$, leading to the misunderstanding that both $$p_0 = m$$ and $$p_0 = -m$$ must hold simultaneously. It is emphasized that $$p_0$$ should be viewed as an operator, specifically $$-i\partial_0$$, and that the equation must be applied to a wave function, distinguishing between the eigenvalue and the operator. The discussion highlights the importance of understanding the mathematical framework of the Dirac equation in quantum mechanics.
Luca_Mantani
Messages
33
Reaction score
1

Homework Statement


[/B]
This is an excercise that was given by my professor in a previous test:
Consider the equation:
$$
\displaystyle{\not} p
=\gamma^\mu p_\mu= m$$
where the identity matrix has been omitted in the second member.
Find its most general solution.

Homework Equations


The equation is Lorentz invariant, so in another reference frame
$$
\displaystyle{\not} p'
=\gamma^\mu p'_\mu= m$$
holds true.

The Attempt at a Solution


I've got the solution but i can't understand it.
We choose a reference frame that is favorable, that is the one in which ##\vec{p}=0##, so the equation become
$$\gamma^0p_0=m$$.
Let's choose ##\gamma^0## in Dirac standard form:
$$
\gamma^0=\begin{pmatrix}
1 & 0 & 0 & 0\\
0 & 1 & 0 & 0\\
0 & 0 & -1 & 0\\
0 & 0 & 0 & -1
\end{pmatrix}
$$

At this point I'm ok with all i have written. Now the solution says:
So the equality becomes:
$$(p_0-m)^2=(p_0+m)^2=0$$

How did this happen? I can't understand it, i would have written the matrix equation and notice that for the equation to hold true i have ##p_0=m## and ##p_0=-m## simultaneously, so the equation is impossible.
What do you think?
 
Physics news on Phys.org
Don't forget the difference between p0 the Eigenvalue, and p0 the operator. You need to solve for both the Eigenvalue and the Eigenvector. The value p0=m corresponds to one vector, and the value p0=-m to another. The equation in your part 1 has to be an operator equation, and can't be true without acting on a wave function.
 
DEvens said:
Don't forget the difference between p0 the Eigenvalue, and p0 the operator. You need to solve for both the Eigenvalue and the Eigenvector. The value p0=m corresponds to one vector, and the value p0=-m to another. The equation in your part 1 has to be an operator equation, and can't be true without acting on a wave function.
Mmm, you mean that p0 is not the time component of the 4-momentum but it's the operator ##-i\partial_0## and both members of the equation are applied to a 4-spinor wave function?
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
95
Views
7K