Existence of directional derivative

Click For Summary
The discussion revolves around the existence of the directional derivative for the function f(x,y) = √[3]{xy} at the point (0,0). The user has established continuity and shown that both partial derivatives at this point are zero. They derived the expression for the directional derivative but are uncertain about its existence. The conclusion reached is that the limit defining the directional derivative exists only if either a or b is zero, indicating that the directional derivative is indeed zero in specific directions. The correctness of the user's working is confirmed by another participant.
songoku
Messages
2,497
Reaction score
400
Homework Statement
Please see below
Relevant Equations
Partial derivative

Direction derivative in the direction of unit vector u = <a, b>:
Du f(x,y) = fx (x,y) a + fy (x,y) b
1697711728618.png


My attempt:
I have proved (i), it is continuous since ##\lim_{(x,y)\rightarrow (0,0)}=f(0,0)##

I also have shown the partial derivative exists for (ii), where ##f_x=0## and ##f_y=0##

I have a problem with the directional derivative. Taking u = <a, b> , I got:
$$Du =\frac{\sqrt[3] y}{3 \sqrt[3] {x^2}}a+\frac{\sqrt[3] x}{3 \sqrt[3] {y^2}}b$$

Then how to check whether the directional derivative exists or not?

Thanks
 
Physics news on Phys.org
The directional derivative at ##[0,0]## in direction ##[a,b]## (has to be zero since both partial directions are and) is given by
$$
D_{[0,0]}(f)\cdot [a,b]=0=\lim_{h\to 0}\dfrac{f([0,0]+h[a,b])-f([0,0])}{h}
$$
What do you get on the right-hand side for ##f([x,y])= \sqrt[3]{xy}##?
 
fresh_42 said:
The directional derivative at ##[0,0]## in direction ##[a,b]## (has to be zero since both partial directions are and) is given by
$$
D_{[0,0]}(f)\cdot [a,b]=0=\lim_{h\to 0}\dfrac{f([0,0]+h[a,b])-f([0,0])}{h}
$$
What do you get on the right-hand side for ##f([x,y])= \sqrt[3]{xy}##?
$$0=\lim_{h\to 0}\frac{\sqrt[3]{(h^{2}ab)}-0}{h}$$
$$0=\lim_{h\to 0}\frac{(ab)^{\frac{1}{3}}}{h^{\frac{1}{3}}}$$

The limit can only exist if ##(ab)^{\frac{1}{3}}=0## so either ##a=0## or ##b=0## and since ##u## is unit vector, if ##a=0## then ##b=\pm 1## and vice versa

Is my working correct? Thanks
 
Yes, that is correct.
 
Thank you very much fresh_42
 
  • Like
Likes jim mcnamara
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...