Expectation value of the square of Momentum

Click For Summary
SUMMARY

The expectation value of the square of momentum, denoted as , is calculated using the Gaussian wave-packet function ψ(x) = (1/(π^1/4)(√d))e^(-x^2/(2d^2)). The integral for is derived from the second derivative of ψ, leading to the expression = ħ(K^2) + (ħ/d). The discussion highlights a critical point regarding the momentum operator, where the correct factor should be ħ^2 rather than ħ, indicating a potential misprint in the problem statement. Participants emphasized the importance of correctly applying the product rule and evaluating integrals involving e^(-x^2).

PREREQUISITES
  • Understanding of quantum mechanics and wave functions
  • Familiarity with Gaussian wave-packets
  • Knowledge of differential calculus, particularly second derivatives
  • Experience with integral calculus, especially Gaussian integrals
NEXT STEPS
  • Review the derivation of the momentum operator in quantum mechanics
  • Study the properties and applications of Gaussian wave-packets
  • Learn about the implications of expectation values in quantum mechanics
  • Explore the evaluation of integrals involving exponential functions
USEFUL FOR

Students and professionals in quantum mechanics, physicists working with wave functions, and anyone interested in the mathematical foundations of momentum in quantum systems.

Milsomonk
Messages
100
Reaction score
17

Homework Statement


The expectation value of <P^2>= -ħ∫ψ* ∂^2ψ/∂x^2 dx
For the Guassian wave-packet ψ(x)=(1/(π^1/4)(√d))e^-((x^2)/(2d^2))
Limits on all integrals are ∞ to -∞.

Homework Equations


<P^2>= -ħ∫ψ* ∂^2ψ/∂x^2 dx
ψ(x)=(1/(π^1/4)(√d))e^(iKx)-((x^2)/(2d^2))

The Attempt at a Solution


Ok, the previous question was to calculate <P> given <P>=-iħ∫ψ* ∂ψ/∂x dx. I did this by calculating the partial derivative of ψ and then taking the integral of ψ* ∂ψ/∂x, then multiplying by -iħ, I got the result <P>=ħK which seemed to make sense. So I tried to take the same method to this question;
Firstly working out the second derivative of ψ, since I already know the first derivative from the first question, I simply differentiated again and found it to be the following

∂^2ψ/∂x^2 = (∂ψ/∂x)(iK-(x/d^2))-(1/d^2)ψ Used Product rule, Plugged ∂ψ/∂x and ψ back in for simplicity.

Next I simplified the Integrand by factoring out ψ.
Giving the integral -iħ∫((x^2)/(d^4))-((2iKx)/(d^2))-(K^2)-(1/(d^2))ψ*ψ dx
I from the previous question that ψ*ψ is (1/((√π)(d)))e^-((x^2)/(d^2)).

So I split this into the sum of 4 separate integrals, two had x values multipied by e^-x values, I concluded that when plugging in infinited these would each go to zero.
so left with two integrals,
<P^2>=(-ħ/((√π)(d)))(-K^2∫e^-((x^2)/(d^2))-1/(d^2) ∫e^-((x^2)/(d^2))

It is given that ∫e^-((x^2)/(d^2)) between ∞ and -∞ is (√π)(d)

So I simplify this all and get <P^2> = ħ(K^2)+(ħ/d)

I have been through my calculations a number of times and can't find and error but I can't help but think that the ħ/d term doesn't really make sense. Any thought's would be much appreciated :)
 
Physics news on Phys.org
Note that the operator ##\hat{p}^2## will have a factor of ##\hbar^2## rather than ##\hbar##. In your four separate integrals, did you get one that has an integrand with a factor of ##x^2##?
 
Thanks for the reply, this is why I distrust the answer that I calculated because it doesn't really agree with my value of <P>. But the only time ħ appears is in the equation given in the question, so there is no way to get ħ^2. The only x^2 i find is in the power of e, which is in each of the four integrals.
 
If ##\hat{p} = -i\hbar \frac{\partial}{\partial x}##, then ##\hat{p}^2 =-\hbar^2 \frac{\partial^2}{\partial x^2} ##. So, there is definitely a factor of ##\hbar^2## in ##\hat{p}^2##. Maybe there was a misprint in the statement of the problem.

EDIT: If you evaluate ##\frac{\partial^2}{\partial x^2} e^{-x^2}##, then you should get a term proportional to ##x^2e^{-x^2}## as well as other terms.
 
Last edited:
You're absolutely right, my bad, it is ħ^2. We are given the integral for e^-(x^2)/(d^2) as (√π)d though.
 

Similar threads

Replies
3
Views
2K
Replies
1
Views
3K
Replies
2
Views
7K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 23 ·
Replies
23
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K