Expected Value and First Order Stochastic Dominance

odck11
Messages
2
Reaction score
0
Dear All:

Given two random variables X and Y, if I have established the relationship E[X]>=E[Y], does this necessarily imply that X must have a first-order-stochastic dominance over Y?

I know that first order stochastic dominance implies that the mean value of the dominating random variable be greater than the other variable but I am trying to find out whether the reverse must hold.

Thanks in advance.
Regards.
 
Mathematics news on Phys.org
odck11 said:
Dear All:

Given two random variables X and Y, if I have established the relationship E[X]>=E[Y], does this necessarily imply that X must have a first-order-stochastic dominance over Y?

I know that first order stochastic dominance implies that the mean value of the dominating random variable be greater than the other variable but I am trying to find out whether the reverse must hold.

Thanks in advance.
Regards.
Not necessarily. Let X have two states 10 and 0, while Y has two states 2 and 1, both with equal probability. E(X) = 5, E(Y) = 1.5, but X does not dominate Y.
 
Great! Thanks a lot. That's what I guessed too but just wanted to make sure. I appreciate your fast reply.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top