Expected values: three fair coins

  • Context: MHB 
  • Thread starter Thread starter oyth94
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on calculating the expected value E(X) when flipping three fair coins, where X is defined as the cube of the number of heads showing. The correct approach involves determining the values of X as 1, 8, and 27 for 1, 2, and 3 heads respectively, and calculating the probabilities using the binomial distribution. The probabilities for getting 0, 1, 2, and 3 heads are given as 1/8, 3/8, 3/8, and 1/8 respectively. The final expected value can be computed using the formula E[X] = Σ x_i * P(X=x_i).

PREREQUISITES
  • Understanding of expected value in probability theory
  • Familiarity with binomial distribution and combinations
  • Basic knowledge of probability calculations
  • Ability to work with summations and series
NEXT STEPS
  • Study the binomial distribution and its applications in probability
  • Learn how to compute expected values for different random variables
  • Explore combinatorial mathematics, particularly binomial coefficients
  • Practice problems involving expected values with varying conditions
USEFUL FOR

Students and professionals in mathematics, statistics, and data science who are looking to deepen their understanding of probability theory and expected value calculations.

oyth94
Messages
32
Reaction score
0
Suppose you roll three fair coins, and let X be the cube of the number of heads
showing. Compute E(X)

I started this question with X=xi where i = 1,2,3 since there are 3 fair coins and there are either 1 2 or 3 heads that will show up. then it says that X will be the cube of the number of heads so I put
P(getting heads) = (1/2)^(i^3)
So E(X) = $$xiP(X=xi)$$ = $$i(1/2)^(i^3)$$ summation from i=1 to 3..
am i on the right track??
 
Physics news on Phys.org
Re: expected values: three fair coins

oyth94 said:
Suppose you roll three fair coins, and let X be the cube of the number of heads
showing. Compute E(X)

I started this question with X=xi where i = 1,2,3 since there are 3 fair coins and there are either 1 2 or 3 heads that will show up. then it says that X will be the cube of the number of heads so I put
P(getting heads) = (1/2)^(i^3)
So E(X) = $$xiP(X=xi)$$ = $$i(1/2)^(i^3)$$ summation from i=1 to 3..
am i on the right track??

Not quite (and you mean flip 3 fair coins...not roll... XD); since $X$ represents the cube of the number of heads, you instead want $x_1=1^3=1$, $x_2=2^3=8$ and $x_3=3^3=27$. Then $\mathbb{P}(X=x_i)$ would represent the probability of getting 1, 2, or 3 heads; in this case, we would have $\mathbb{P}(X=x_i)=\dfrac{1}{2^i}$, $i=1,2,3$. Thus,
\[E[X]=\sum_{i=1}^3 x_i\mathbb{P}(X=x_i)=\ldots\]

I hope this makes sense!
 
Re: expected values: three fair coins

Chris L T521 said:
Not quite (and you mean flip 3 fair coins...not roll... XD); since $X$ represents the cube of the number of heads, you instead want $x_1=1^3=1$, $x_2=2^3=8$ and $x_3=3^3=27$. Then $\mathbb{P}(X=x_i)$ would represent the probability of getting 1, 2, or 3 heads; in this case, we would have $\mathbb{P}(X=x_i)=\dfrac{1}{2^i}$, $i=1,2,3$. Thus,
\[E[X]=\sum_{i=1}^3 x_i\mathbb{P}(X=x_i)=\ldots\]

I hope this makes sense!

Oh I see what you did! Thank you so much!
 
Re: expected values: three fair coins

Chris L T521 said:
$\mathbb{P}(X=x_i)=\dfrac{1}{2^i}$, $i=1,2,3$. Thus,
\[E[X]=\sum_{i=1}^3 x_i\mathbb{P}(X=x_i)=\ldots\]
i have a doubt(probably elementary),
you have assumed probability of getting one head is $$\frac{1}{2}$$.But i think it is the probability to get at least one head ,doesn't that include cases of $$2$$ or $$3$$ heads and why isn't the probability $$\frac{1}{2^3}$$ for all cases
(i mean why aren't we taking exact probability here)
 
Re: expected values: three fair coins

mathworker said:
i have a doubt(probably elementary),
you have assumed probability of getting one head is $$\frac{1}{2}$$.But i think it is the probability to get at least one head ,doesn't that include cases of $$2$$ or $$3$$ heads and why isn't the probability $$\frac{1}{2^3}$$ for all cases
(i mean why aren't we taking exact probability here)

The probability to have k heads in 3 trials is $\displaystyle \frac{\binom{3}{k}}{8}$, so that...

$P\{k=0\} = \frac{1}{8}$

$P\{k=1\} = \frac{3}{8}$

$P\{k=2\} = \frac{3}{8}$

$P\{k=3\} = \frac{1}{8}$

Kind regards

$\chi$ $\sigma$
 
got it,changing the positions we could get 3 possibilities of eight , thank you
 

Similar threads

  • · Replies 57 ·
2
Replies
57
Views
6K
  • · Replies 41 ·
2
Replies
41
Views
8K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 45 ·
2
Replies
45
Views
6K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 2 ·
Replies
2
Views
5K