Experiment with an Electroscope, a Charged Rod and my hand

Click For Summary
When a positively charged rod is brought near an electroscope, the charges within the electroscope separate, causing the leaves to repel each other. If the positively charged rod is then touched with a hand, it likely grounds the rod, allowing electrons to flow from the hand to the rod. This results in the electroscope becoming negatively charged, as the leaves, initially positively charged, will now repel each other more strongly due to gaining negative charge. After removing the hand and rod, the electroscope retains a negative charge. Ultimately, the electroscope ends up negatively charged due to the grounding effect.
MatinSAR
Messages
673
Reaction score
204
Homework Statement
We bring a positively charged rod closer to the electroscope what happens if we touch the positively charged rod with our hands and then move the hand and rod away?
Relevant Equations
Electrostatics
I know that if we bring a positively charged rod closer to the electroscope, charges of electroscope are separated and the leaves of the electroscope get away from each other. but what happens if we touch the positively charged rod with our hands and then move the hand and rod away?
 
Physics news on Phys.org
What do you think happens ? Bear in mind that "touch the positively charged rod" probably means you've grounded the rod.
 
hmmm27 said:
What do you think happens ? Bear in mind that "touch the positively charged rod" probably means you've grounded the rod.
Thank you.
I think electroscope charge will be - in the end.
 
Why ?
 
hmmm27 said:
Why ?
Because at first, the rod approaches the electroscope with a positive charge, so the conductor sphere has a negative charge and the leaves have a positive charge. when we touch the rod the leaves are repelled and negatively charged, so the distance between them is reduced and after colliding with each other, they are charged with the same charges (both negative charge) and repel each other.
 
Thread 'Correct statement about size of wire to produce larger extension'
The answer is (B) but I don't really understand why. Based on formula of Young Modulus: $$x=\frac{FL}{AE}$$ The second wire made of the same material so it means they have same Young Modulus. Larger extension means larger value of ##x## so to get larger value of ##x## we can increase ##F## and ##L## and decrease ##A## I am not sure whether there is change in ##F## for first and second wire so I will just assume ##F## does not change. It leaves (B) and (C) as possible options so why is (C)...

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
6
Views
2K
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 2 ·
Replies
2
Views
5K
Replies
20
Views
3K