What Are the Quotient Groups of D6 and D9 Up to Isomorphism?

Click For Summary
The discussion focuses on finding the quotient groups of the dihedral groups D6 and D9 up to isomorphism. "Up to isomorphism" means considering groups that are structurally the same, even if they contain different elements. The participants clarify that the questions regarding D6 and D9 are independent of each other. The approach involves identifying normal subgroups of D6, which include {id}, {id, R^2, R^4}, and others, but some normal subgroups were initially overlooked. The correct identification of these subgroups is crucial for determining the isomorphic quotient groups accurately.
zcdfhn
Messages
23
Reaction score
0
Find, up to isomorphism, all possible quotient groups of D6 and D9, the dihedral group of 12 and 18 elements.

First of all, I don't understand the question by what they mean about "up to isomorphism." Does this mean by using the First Isomorphism Theorem? Also does this question imply that the quotient group of D6 and D9 depend on each other, or is the question asking for two different things.

Thank you for your help.
 
Physics news on Phys.org
"Up to isomorphism" means that if two quotient groups are different (that is, are composed of different elements) but isomorphic to each other (e.g. both are cyclic groups of order 6), then that only counts as one group.

Also, I'm pretty sure that it's two separate questions...the quotient groups of D6 and D9 are independent.
 
Thanks that's much clearer, so my approach to find all the quotient groups of D6 is to use the 1st isomorphism theorem, so I start with finding all the normal subgroups of D6, which are {id}, {id, R^2, R^4}, {id, R, R^2, R^3, R^4, R^5}, and D3, where R = rotation by pi/3 (I'm not sure if I'm missing anything else). Then I figure out what D3/{id}, D3/{id, R^2, R^4}, D3/{id, R, R^2, R^3, R^4, R^5}, and D3/D3, but the problem is I don't know what they are isomorphic to, especially the quotients in the middle. (I think they are isomorphic to D3, Z2, Z2, and id, respectively)

Please tell me what to fix or what I'm doing correctly, etc. Thank you.
 
You're making progress, but there are still flaws.

D3/{id}, D3/{id, R^2, R^4}, D3/{id, R, R^2, R^3, R^4, R^5}, and D3/D3

All those "numerators" should be D6. This will change the rest of your work.

You are missing two normal subgroups, one of order two and one of order six.
 
The (proper) subgroups that are quotients of D_6 can only have orders 2,3,4,6. There aren't many groups of those orders - clearly there is only one group of order 3 and one of order 2, so the order uniquely determines those. There are only groups of order 6, one abelian and one not, so those are easy to spot.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
912
  • · Replies 7 ·
Replies
7
Views
2K
Replies
8
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K