1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Testing whether a binary structure is a group

  1. Feb 15, 2017 #1
    1. The problem statement, all variables and given/known data
    Consider the binary structure given by multiplication mod 20 on {4, 8, 12, 16}.
    Is this a group? If not, why not?

    2. Relevant equations

    3. The attempt at a solution
    I started by constructing a Cayley table, and working things out. It turns out that 16 acts as an identity element, 4 is the inverse of itself, 12 and 8 are mutual inverses, and 16 is the inverse of itself. One more things to check would be to see if the associative property is satisfied for all elements. However, this would seem to be a very tedious process.

    On the other hand, I know that, up to isomorphism, there are only two types of groups of order 4, the cyclic group ##\mathbb{Z}_4## and the Klein four-group. Just by comparing tables, the Cayley table for this binary structure is equivalent to that of the Klein four-group. So is it valid to say, by isomorphism, that this binary structure is also a group, or do I have to explicitly show associativity?
  2. jcsd
  3. Feb 15, 2017 #2


    User Avatar
    2017 Award

    Staff: Mentor

    The isomorphism is sufficient, because you already know, that the other group is associative. Beside that, you only need the closure, i.e. that the multiplication stays inside the set. Associativity is then inherited by ##\mathbb{Z}_{20}## or even by ##\mathbb{Z}## itself.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted