- 19,851
- 10,882
Definition/Summary
The exponential (the exponential function), written either e^x or exp(x), is the only function whose derivative (apart from a constant factor) is itself.
It may be defined over the real numbers, over the complex numbers, or over more complicated algebras such as matrices.
Its value at 0 is 1, and its value at 1 is the exponential constant (or Euler's constant or Napier's constant), e = 2.71828...
Its value at pure imaginary numbers is a combination of cos and sin (and therefore it may be used to define them): exp(ix) = cosx + isinx (Euler's formula), and therefore exp(i\pi) = -1 (Euler's indentity).
Its inverse (over real or complex numbers) is the natural logarithm, log(x) (often written ln(x), to distinguish it from the base-10 logarithm): if y = exp(x), then x = log(y).
Equations
Definitions:
\frac{de^x}{dx}\ =\ e^x\ \text{and}\ e^0\,=\,1
e^x\ =\ 1\ +\ x\ +\ \frac{x^2}{2} +\ \frac{x^3}{6} +\ \frac{x^4}{24} +\ \frac{x^5}{120}\ \dots\ = \sum_{n\,=\,0}^{\infty}\frac{x^n}{n!}
e^x\ =\ \lim_{n\rightarrow\infty}\left(1\ +\ \frac{x}{n}\right)^n
Euler's formula:
e^{ix}\ =\ cosx\ +\ i sinx
and so cos and sin may be defined:
cosx\ =\ \frac{1}{2}\left(e^{ix}\ +\ e^{-ix}\right) and i sinx\ =\ \frac{1}{2}\left(e^{ix}\ -\ e^{-ix}\right)
Hyperbolic functions:
e^{x}\ =\ coshx\ +\ sinhx
coshx\ =\ \frac{1}{2}\left(e^{x}\ +\ e^{-x}\right) and sinhx\ =\ \frac{1}{2}\left(e^{x}\ -\ e^{-x}\right)
tanhx\ =\ \frac{sinhx}{coshx}\ =\ \frac{e^x\ -\ e^{-x}}{e^x\ +\ e^{-x}}
tanh\frac{1}{2}x\ =\ \frac{e^x\ -\ 1}{e^x\ +\ 1} and e^x\ =\ \frac{1\ +\ tanh\frac{1}{2}x}{1\ -\ tanh\frac{1}{2}x}
Logarithms:
y\ =\ e^x \Leftrightarrow\ x\ =\ ln(y) \Leftrightarrow\ \frac{dy}{dx}\ =\ y\ \text{and}\ y(0)\,=\,1\Leftrightarrow\ \frac{dx}{dy}\ =\ \frac{1}{x}\ \text{and}\ x(1)\,=\,0
e^{ln(x)}\ =\ x
a^x\ =\ \left(e^{ln(a)}\right)^x\ =\ e^{x\,ln(a)}
y\ =\ a^x \Leftrightarrow\ x\ =\ log_a(y)\ \equiv\ \frac{ln(y)}{ln(a)}\frac{da^x}{dx}\ =\ ln(a)\,e^{x\,ln(a)}\ =\ ln(a)\,a^x
Extended explanation
"Exponentially" ("geometrically"):
A function is said to increase exponentially (or geometrically), or is O(ex), if it increases "as fast as" ex
So such a function increases faster than any fixed power of x.
(For example, 2x increases exponentially.
By comparison, a function increases arithmetically, or is O(x), if it increases "as fast as" x, and is O(xn) if it increases "as fast as" xn)
* This entry is from our old Library feature. If you know who wrote it, please let us know so we can attribute a writer. Thanks!
The exponential (the exponential function), written either e^x or exp(x), is the only function whose derivative (apart from a constant factor) is itself.
It may be defined over the real numbers, over the complex numbers, or over more complicated algebras such as matrices.
Its value at 0 is 1, and its value at 1 is the exponential constant (or Euler's constant or Napier's constant), e = 2.71828...
Its value at pure imaginary numbers is a combination of cos and sin (and therefore it may be used to define them): exp(ix) = cosx + isinx (Euler's formula), and therefore exp(i\pi) = -1 (Euler's indentity).
Its inverse (over real or complex numbers) is the natural logarithm, log(x) (often written ln(x), to distinguish it from the base-10 logarithm): if y = exp(x), then x = log(y).
Equations
Definitions:
\frac{de^x}{dx}\ =\ e^x\ \text{and}\ e^0\,=\,1
e^x\ =\ 1\ +\ x\ +\ \frac{x^2}{2} +\ \frac{x^3}{6} +\ \frac{x^4}{24} +\ \frac{x^5}{120}\ \dots\ = \sum_{n\,=\,0}^{\infty}\frac{x^n}{n!}
e^x\ =\ \lim_{n\rightarrow\infty}\left(1\ +\ \frac{x}{n}\right)^n
Euler's formula:
e^{ix}\ =\ cosx\ +\ i sinx
and so cos and sin may be defined:
cosx\ =\ \frac{1}{2}\left(e^{ix}\ +\ e^{-ix}\right) and i sinx\ =\ \frac{1}{2}\left(e^{ix}\ -\ e^{-ix}\right)
Hyperbolic functions:
e^{x}\ =\ coshx\ +\ sinhx
coshx\ =\ \frac{1}{2}\left(e^{x}\ +\ e^{-x}\right) and sinhx\ =\ \frac{1}{2}\left(e^{x}\ -\ e^{-x}\right)
tanhx\ =\ \frac{sinhx}{coshx}\ =\ \frac{e^x\ -\ e^{-x}}{e^x\ +\ e^{-x}}
tanh\frac{1}{2}x\ =\ \frac{e^x\ -\ 1}{e^x\ +\ 1} and e^x\ =\ \frac{1\ +\ tanh\frac{1}{2}x}{1\ -\ tanh\frac{1}{2}x}
Logarithms:
y\ =\ e^x \Leftrightarrow\ x\ =\ ln(y) \Leftrightarrow\ \frac{dy}{dx}\ =\ y\ \text{and}\ y(0)\,=\,1\Leftrightarrow\ \frac{dx}{dy}\ =\ \frac{1}{x}\ \text{and}\ x(1)\,=\,0
e^{ln(x)}\ =\ x
a^x\ =\ \left(e^{ln(a)}\right)^x\ =\ e^{x\,ln(a)}
y\ =\ a^x \Leftrightarrow\ x\ =\ log_a(y)\ \equiv\ \frac{ln(y)}{ln(a)}\frac{da^x}{dx}\ =\ ln(a)\,e^{x\,ln(a)}\ =\ ln(a)\,a^x
Extended explanation
"Exponentially" ("geometrically"):
A function is said to increase exponentially (or geometrically), or is O(ex), if it increases "as fast as" ex
So such a function increases faster than any fixed power of x.
(For example, 2x increases exponentially.
By comparison, a function increases arithmetically, or is O(x), if it increases "as fast as" x, and is O(xn) if it increases "as fast as" xn)
* This entry is from our old Library feature. If you know who wrote it, please let us know so we can attribute a writer. Thanks!
Last edited by a moderator: