Exponential Growth And Composite Functions

Click For Summary

Discussion Overview

The discussion revolves around solving problems related to exponential growth and composite functions, specifically focusing on the rate of spread of a rumor and finding horizontal tangent lines for a given function. Participants explore various mathematical approaches and derivatives in the context of these problems.

Discussion Character

  • Homework-related
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents the rate of spread of a rumor as p'(t) = 5/[e^.5t * (1+10e^(-.5t))^2], indicating a method of deriving this using calculus.
  • Another participant discusses finding horizontal tangent lines for the function y = cos(x)/(2 + sin(x)), asserting that dy/dx = 0 leads to sin(x) = -1/2.
  • Further elaboration on the derivative of y is provided, with a detailed expression for y' and the conditions for horizontal tangents being explored.
  • Some participants express agreement with the derivation of p'(t) but question the correctness of the conditions found for the second question, requesting more detailed work on the derivative calculations.
  • One participant revisits their calculations for the horizontal tangent problem, arriving at the coordinates (11π/6, 2/√3) and (7π/6, -2/√3) after correcting their approach.

Areas of Agreement / Disagreement

There is some agreement on the derivation of p'(t), but disagreement exists regarding the conditions for the horizontal tangent problem, with participants questioning each other's calculations and interpretations.

Contextual Notes

Some participants have expressed confusion over the steps taken in the derivative calculations, indicating that there may be missing assumptions or unclear reasoning in the presented solutions.

Who May Find This Useful

This discussion may be useful for students working on calculus problems involving derivatives, exponential functions, and composite functions, particularly in the context of homework or exam preparation.

ardentmed
Messages
158
Reaction score
0
Hey guys,

Few more questions for the problem set I've been working on. I'm doubting some of my answers and I'd appreciate some help.

Question:

erxtl4.png

The first one starts off easy but I found that it gets progress more challenging later on. So the rate of spread should be p'(t) which is:

p'(t) = 5/[e^.5t * (1+10e^(-.5t))^2]As for 1b, I just used chain rule and product rule together to get:

f''(x) = 6xy'(x^2) + 4(x^3)g''(x^2)And finally, for the second question, if the tangent it horizontal, then dy/dx = 0, right?

Therefore, you solve for x, which leads you to:

sinx=-1
x=arcsin(-1)
x= -π/2Which leads to ( -π/2 , 0 ) as the co-ordinates after substituting x = -π/2 into the original function.

Thanks in advance.
 
Physics news on Phys.org
ardentmed said:
Hey guys, ...And finally, for the second question, if the tangent it horizontal, then dy/dx = 0, right?

Therefore, you solve for x, which leads you to:

sinx=-1
x=arcsin(-1)
x= -π/2Which leads to ( -π/2 , 0 ) as the co-ordinates after substituting x = -π/2 into the original function.

Thanks in advance.

For the second question:

$$y'=-\frac{\mathrm{sin}\left( x\right) }{\mathrm{sin}\left( x\right) +2}-\frac{{\mathrm{cos}\left( x\right) }^{2}}{{\left( \mathrm{sin}\left( x\right) +2\right) }^{2}}$$

so: $y'=0$ means:

$$\begin{aligned}
-\frac{\mathrm{sin}\left( x\right) }{2+\mathrm{sin}\left( x\right) }-\frac{{\mathrm{cos}\left( x\right) }^{2}}{{\left( 2+ \mathrm{sin}\left( x\right) \right) }^{2}}&=0,\\
\sin(x)(2+\sin(x))+(\cos(x))^2&=0,\\
2\sin(x)+1&=0,\\
\sin(x)&=-1/2 \dots
\end{aligned} $$
 
Horizontal Tangent Lines

Question 1: =Under certain circumstances a rumor spreads according to the equation p(t) = 1/(1+10e^(−0.5t)) ,
where p(t) is the proportion of the population that knows the rumor at time t.
constants.
Find the rate of spread of the rumor.

Question 2: Find the coordinates for the points on the curve where y= cos(x)/(2+sin(x)) $0\le x\le 2\pi $ is horizontal. The first one starts off easy but I found that it gets progress more challenging later on. So the rate of spread should be p'(t) which is:

p'(t) = 5/[e^.5t * (1+10e^(-.5t))^2]As for 1b, I just used chain rule and product rule together to get:

f''(x) = 6xy'(x^2) + 4(x^3)g''(x^2)And finally, for the second question, if the tangent it horizontal, then dy/dx = 0, right?

Therefore, you solve for x, which leads you to:

sinx=-1
x=arcsin(-1)
x= -π/2Which leads to ( -π/2 , 0 ) as the co-ordinates after substituting x = -π/2 into the original function.

Thanks in advance.
 
zzephod said:
For the second question:

$$y'=-\frac{\mathrm{sin}\left( x\right) }{\mathrm{sin}\left( x\right) +2}-\frac{{\mathrm{cos}\left( x\right) }^{2}}{{\left( \mathrm{sin}\left( x\right) +2\right) }^{2}}$$

so: $y'=0$ means:

$$\begin{aligned}
-\frac{\mathrm{sin}\left( x\right) }{2+\mathrm{sin}\left( x\right) }-\frac{{\mathrm{cos}\left( x\right) }^{2}}{{\left( 2+ \mathrm{sin}\left( x\right) \right) }^{2}}&=0,\\
\sin(x)(2+\sin(x))+(\cos(x))^2&=0,\\
2\sin(x)+1&=0,\\
\sin(x)&=-1/2 \dots
\end{aligned} $$
Alright, so with that in mind, I re-did the question and computed:

arcsin(-1/2) = x

Thus,

x= 11$\pi$ /6, 7$\pi$ / 6.

Giving the points

(11$\pi$ /6, 2/√3) and (7$\pi$ / 6 , -2/√3)
 
I agree with your derivation of $p'(t)$, but do not see question 1b).

For the second question, yes, we want to require $$\d{y}{x}=0$$. But, you have not found the correct condition, and since you have not shown your work, I have no idea where you went wrong. Please show your work in computing the derivative.
 
I have merged two threads together since they are the same questions. Do you see how double posting lead to me duplicating the efforts of zzephod? I value my time, and don't want to see it wasted, nor do I want to see the time of others wasted as well.

Please do not create a new thread dealing with questions you have already posted.
 
MarkFL said:
I agree with your derivation of $p'(t)$, but do not see question 1b).

For the second question, yes, we want to require $$\d{y}{x}=0$$. But, you have not found the correct condition, and since you have not shown your work, I have no idea where you went wrong. Please show your work in computing the derivative.
My apologies for the oversight.

Regardless, I did it again and came up with the same answer:

arcsin(-1/2) = x

Therefore, this value can be computed by drawing out the 45 degree triangle with 1-1-√2 sides. Therefore, the solutions should be 2π - π/4 = 11π /6, and π + π/4 = 7π / 6

Thus,

x= 11π /6, 7π / 6.

Giving the points

(11π /6, 2/√3) and (7π / 6 , -2/√3)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K