Expression for the magnitude of an electric field

Click For Summary

Homework Help Overview

The discussion revolves around calculating the electric field magnitude at a point due to two charged rings, focusing on the contributions from each ring and the effects of their respective charges.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants explore the integration of electric field contributions from each ring, questioning the correct approach to combine these contributions given the charges involved. There is discussion about the symmetry of the problem and the significance of the x-component of the electric field.

Discussion Status

Participants are actively engaging with the problem, with some offering insights into the integration process and the need to consider vector directions. There is a recognition of the need to calculate each electric field separately before combining them, though no consensus on the final approach has been reached.

Contextual Notes

Participants note that the problem specifies that one charge is greater than the other, which influences how the electric fields are combined. There is also mention of potential complexities in the integration process due to the geometry of the rings.

mousey
Messages
9
Reaction score
2
Homework Statement
Find an expression for the magnitude of the electric field at point A midway between the two rings of radius R shown in the figure below. The ring on the left has a uniform charge q1 and the ring on the right has a uniform charge q2. The rings are separated by distance d. Assume the positive x axis points to the right, through the center of the rings. (Use any variable or symbol stated above along with the following as necessary: k for Coulomb's constant. Assume q1 is greater than q2, and that both charges are positive.)
(picture in replies)
Relevant Equations
E= (kq)/d^2
k(q_1-q_2)/(R^2+x^2)^3/2
 
Physics news on Phys.org
1625946585102.png
 
You basically, have to consider one ring, let's say the left one, and calculate the magnitude of the electric field at A due to it, that is calculate the line integral $$\vec{E_1}=\int_{ring 1}\frac{k\rho_1 (\vec{r}-\vec{r'})dr'}{|\vec{r}-\vec{r'}|^3}$$, where $$\vec{r}=\frac{d}{2}\hat x$$,$$\rho_1=\frac{q_1}{2\pi R}$$, $$dr'=\sqrt{1+(f'(z))^2}dz$$ $$f(z)=\sqrt{R^2-z^2}$$, $$\vec{r'}=\sqrt{R^2-z^2}\hat y+z\hat z$$.

It is enough to calculate only the x-component of ##\vec{E_1}##, because the point A lies on the axis that passes through the center of the ring, hence due to symmetry reasons, the y and z components of ##\vec{E_1}## will be zero at point A.

Then calculate similarly the contribution ##\vec{E_2}## to the electric field from the ring to the right, and then take the sum $$\vec{E}=\vec{E_1}+\vec{E_2}$$ for the total electric field E at point A.
 
Last edited:
Thank you. I'm just wondering, the problem says q1 is greater than q2, and both are positive, so wouldn't I subtract E1-E2? Do I integrate both and then subtract?
 
mousey said:
Thank you. I'm just wondering, the problem says q1 is greater than q2, and both are positive, so wouldn't I subtract E1-E2? Do I integrate both and then subtract?
The fields add as vectors, snd as scalars along the x axis. But as scalars, one will have a negative value.
Yes, find each field separately before combining them.
 
Yes , well if you find that $$\vec{E_1}=A\hat x$$ where A is a scalar function of ##q_1,R,d## then you ll find that $$\vec{E_2}=-B \hat x$$ where B is another scalar function of ##q_2,R,d##, so that $$\vec{E_1}+\vec{E_2}=(A-B)\hat x$$

Just remember that when you do all the substitutions (for ##\vec{r},\vec{r'} , dr ## e.t.c) you ll end up with an integral that has ##\hat y## and ##\hat z## terms as well as the ##\hat x## term. Just ignore the first two terms (or maybe you can integrate as an exercise to prove that those integrals would be zero) and focus on the ##\hat x## term that is the x-component of the E-field.

And actually the way I 've setup ##\vec{r'}## is for the integral of the upper half of the ring. To calculate the integral for the lower half you got to set ##\vec{r'}=-\sqrt{R^2-z^2}\hat y+z\hat z##. This also means that when you calculate the x-component you got to multiply it by 2 (the x-component is the same for the upper half and for the lower half).
 
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
11
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
1K
Replies
17
Views
3K
Replies
8
Views
1K