Find the magnitude of the electric force from 3 charges at vertices of a cube

In summary: N.Yes, the distance between B and P is greater than the distance between A and P. I took ##k = 9\times 10^9 Nm^2/C^2##
  • #1
paulimerci
287
47
Homework Statement
Question is posted below.
Relevant Equations
Coulomb law F_e = kq1q2/r^2
There are three charges with +1 μC and −1 μC, are placed at the opposite corners of a cube with edges of length 1 cm, and the distance from P to B is 1cm 2. I labeled them as A, P, and B, which is shown in the diagram below. Since we need to find the magnitude of the charge at point P and the charge at point P is +1 μC, it exerts an attractive force on point B and a repulsive force on point A. I've indicated the FBD below. Using Coulomb's law, we get
Fe=kq1q2r2
∑Fx=FBPcos45+FAP
∑Fx=91

∑Fy=FBPsin45
∑Fy=45.5N
Using Pythagorean we get,
Resultant magnitude of electric force = 101.7N
I did something wrong here. Can anyone point out where I made the mistake?
Thank you!
 

Attachments

  • Screenshot 2023-05-17 at 6.27.29 PM.png
    Screenshot 2023-05-17 at 6.27.29 PM.png
    8.4 KB · Views: 49
  • Screenshot 2023-05-17 at 6.18.31 PM.png
    Screenshot 2023-05-17 at 6.18.31 PM.png
    16.9 KB · Views: 62
Last edited:
Physics news on Phys.org
  • #2
Are you sure that force ##\mathbf{F}_{BP}## has a nonzero x-component?
 
  • #3
TSny said:
Are you sure that force ##\mathbf{F}_{BP}## has a nonzero x-component?
Does that mean F_BP cancels with F_AP since they are in opposite directions?
 
  • #4
TSny said:
Are you sure that force ##\mathbf{F}_{BP}## has a nonzero x-component?
I got the answer, and I edited my answer in post #1.
 
  • #5
paulimerci said:
Fe=kq1q2r2
∑Fx=FBPcos45+FAP
∑Fx=91
The equation ##\sum F_x = F_{BP}\cos 45^o + F_{AP}## is not correct.
Can you see that the vector ##\mathbf{F}_{BP}## is perpendicular to the vector ##\mathbf{F}_{AP}##?

paulimerci said:
∑Fy=FBPsin45
∑Fy=45.5N
##F_{BP}\sin 45^o \neq 45.5 N##. What value did you get for ##F_{BP}##?

Does the vector ##\mathbf{F}_{BP}## have a z-component as well as a y-component?
In your diagram, you didn't indicate the directions of the x, y, and z axes.
 
Last edited:
  • Like
Likes scottdave and MatinSAR
  • #6
TSny said:
The equation ##\sum F_x = F_{BP}\cos 45^o + F_{AP}## is not correct.
Can you see that the vector ##\mathbf{F}_{BP}## is perpendicular to the vector ##\mathbf{F}_{AP}##.##F_{BP}\sin 45^o \neq 45.5 N##. What value did you get for ##F_{BP}##?

Does the vector ##\mathbf{F}_{BP}## have a z-component as well as a y-component?
In your diagram, you didn't indicate the directions of the x, y, and z axes.
Isn’t the ##F_{BP} sin45## perpendicular to the ##F_{AP}##?
F_BP sin 45 = 31.8N
 
  • #7
The key is to realize that the vector ##\mathbf{F}_{BP}## is perpendicular ##\mathbf{F}_{AP}##.

1684380242711.png

If you see that the two vectors are perpendicular, then it should be easy to find the magnitude of their sum. You don't need to consider x, y, or z components.
 
  • Like
Likes scottdave, paulimerci, MatinSAR and 1 other person
  • #8
TSny said:
The key is to realize that the vector ##\mathbf{F}_{BP}## is perpendicular ##\mathbf{F}_{AP}##.

View attachment 326712
If you see that the two vectors are perpendicular, then it should be easy to find the magnitude of their sum. You don't need to consider x, y, or z components.
Thanks for the diagram. I can't visualize F_BP perpendicular to F_AP.
 
  • #9
paulimerci said:
Thanks for the diagram. I can't visualize F_BP perpendicular to F_AP.
##\mathbf{F}_{BP}## lies in the face of the cube that is shaded yellow.

The edge AP of the cube is perpendicular to the yellow face.

Imagine looking at the cube so that you are looking directly at the yellow face.
1684381043625.png

Imagine what the direction of ##\mathbf{F}_{AP}## would be in this picture.
 
  • Like
Likes scottdave, paulimerci, MatinSAR and 1 other person
  • #10
TSny said:
##\mathbf{F}_{BP}## lies in the face of the cube that is shaded yellow.

The edge AP of the cube is perpendicular to the yellow face.

Imagine looking at the cube so that you are looking directly at the yellow face.
View attachment 326713
Imagine what the direction of ##\mathbf{F}_{AP}## would be in this picture.
I think I understood what you said. So the magnitude of the electric force is 128N?
 
  • #11
paulimerci said:
I think I understood what you said. So the magnitude of the electric force is 128N?
Please show the calculation that gave you this result.

What value did you get for ##F_{AP}##?

What value did you get for ##F_{BP}##?
 
  • #12
TSny said:
Please show the calculation that gave you this result.

What value did you get for ##F_{AP}##?

What value did you get for ##F_{BP}##?
Ok.
##F_{AP} = 91N##
##F_{BP} = 91N##
Using Pythagorean, the net magnitude of electric force at point p is 128N.
 
  • #13
paulimerci said:
##F_{AP} = 91N##
I'm not sure how you got 91 N rather than 90 N. The value of Coulomb's constant is ##k = 8.99 \times 10^9## Nm2/C2.

paulimerci said:
##F_{BP} = 91N##
The distance between B and P is greater than the distance between A and P. So, shouldn't ##F_{BP}## be less than ##F_{AP}##?
 
  • Like
Likes scottdave and paulimerci
  • #14
TSny said:
I'm not sure how you got 91 N rather than 90 N. The value of Coulomb's constant is ##k = 8.99 \times 10^9## Nm2/C2.The distance between B and P is greater than the distance between A and P. So, shouldn't ##F_{BP}## be less than ##F_{AP}##?
Yes, the distance between B and P is greater than the distance between A and P. I took ##k = 9\times 10^9 Nm^2/C^2##
I did something wrong in calculating the distance.
##F_{BP} = 45.5 N ## and ##F_{AP} = 91N##.
Thereby the magnitude of electric force at point P is 102N.
 
  • #15
paulimerci said:
Yes, the distance between B and P is greater than the distance between A and P. I took ##k = 9\times 10^9 Nm^2/C^2##
I did something wrong in calculating the distance.
##F_{BP} = 45.5 N ## and ##F_{AP} = 91N##.
Thereby the magnitude of electric force at point P is 102N.
Using ##\displaystyle k = 9\times 10^9 \, \rm{Nm^2/C^2}## rather than ##\displaystyle 8.99\times 10^9 \, \rm{Nm^2/C^2}## will give ##F_{AP} = 90\, \rm N##
 
  • #16
SammyS said:
Using ##\displaystyle k = 9\times 10^9 \, \rm{Nm^2/C^2}## rather than ##\displaystyle 8.99\times 10^9 \, \rm{Nm^2/C^2}## will give ##F_{AP} = 90\, \rm N##
I'm sorry I used ## k= 9.1 \times 10^9 Nm^2/C^2## that's how I got the answer for ##F_{AP} = 91N ##
 
  • #17
paulimerci said:
##F_{BP} = 45.5 N ## and ##F_{AP} = 91N##.
Thereby the magnitude of electric force at point P is 102N.
OK. You have the solution. Using k = 9.0 x 109 Nm2/C2 would give 101 N. But the data in the problem is stated to only one significant figure! Your answer is close enough to pick out the correct answer in the multiple choice.
 
  • Like
Likes scottdave, MatinSAR and paulimerci
  • #18
TSny said:
OK. You have the solution. Using k = 9.0 x 109 Nm2/C2 would give 101 N. But the data in the problem is stated to only one significant figure! Your answer is close enough to pick out the correct answer in the multiple choice.
The answer is close to 100 N. Thank you @TSny for your great help!
 
  • Like
Likes berkeman, TSny and MatinSAR

1. What is the formula for calculating the magnitude of the electric force between 3 charges at vertices of a cube?

The formula for calculating the magnitude of the electric force between 3 charges at vertices of a cube is F = k * q1 * q2 / r^2, where k is the Coulomb's constant, q1 and q2 are the charges of the two charges, and r is the distance between them.

2. How do you determine the direction of the electric force between 3 charges at vertices of a cube?

The direction of the electric force between 3 charges at vertices of a cube can be determined by using the principle of superposition. This means that the electric force between two charges is along the line connecting them, and the total electric force is the vector sum of the individual forces.

3. Can the magnitude of the electric force be negative?

Yes, the magnitude of the electric force can be negative. This indicates that the force is attractive between two opposite charges. A positive magnitude indicates a repulsive force between two like charges.

4. How does the distance between the charges affect the magnitude of the electric force?

The magnitude of the electric force is inversely proportional to the square of the distance between the charges. This means that as the distance increases, the force decreases, and vice versa. This relationship is described by the inverse square law.

5. Can the magnitude of the electric force be affected by the presence of other charges?

Yes, the presence of other charges can affect the magnitude of the electric force between 3 charges at vertices of a cube. This is due to the principle of superposition, which states that the total electric force is the vector sum of the individual forces between each pair of charges.

Similar threads

  • Introductory Physics Homework Help
Replies
5
Views
808
  • Introductory Physics Homework Help
Replies
12
Views
1K
  • Introductory Physics Homework Help
Replies
21
Views
667
  • Introductory Physics Homework Help
Replies
1
Views
821
  • Introductory Physics Homework Help
Replies
1
Views
3K
  • Introductory Physics Homework Help
2
Replies
68
Views
4K
  • Introductory Physics Homework Help
Replies
12
Views
206
  • Introductory Physics Homework Help
Replies
6
Views
2K
  • Introductory Physics Homework Help
Replies
1
Views
752
  • Introductory Physics Homework Help
Replies
11
Views
2K
Back
Top