A Expression of Shot noise when expanding ##a_{\ell m}## coefficients

Click For Summary
The discussion focuses on deriving the expression for the quantity o_ℓ in the context of dark matter and Poisson noise. The proposed formula is o_ℓ = b_sp² C_ℓ^{DM} + B_sp, where B_sp represents the Poisson noise defined as B_sp = 1/𝑛̄. The expansion of o_ℓ leads to the conclusion that the term <(a_ℓm^P)²> must be justified as equal to 1/𝑛̄, raising questions about its relationship to variance. Clarification is needed on how B_sp relates to the variance of a non-centered Poisson distribution, given that <a_ℓm^P> does not equal zero. Ultimately, the total signal C_ℓ is expressed as C_ℓ = b_sp² C_ℓ^{DM} + B_sp.
fab13
Messages
300
Reaction score
7
TL;DR
I would like to prove that Shot noise follows a Poisson distribution.
I would like to arrive at the following expression for the quantity ##o_{\ell}## ( with "DM" for Dark Matter ):

##o_{\ell}=b_{s p}^2 C_{\ell}^{D M}+B_{s p}##

with Poisson noise ##B_{s p}=\frac{1}{\bar{n}}(\bar{n}## being the average number of galaxies observed). the index "sp" is for spectro. I think for now that ##B_{s p}## is the variance of a Poisson noise but see the following below to really confirm: To arrive at this same expression, I would like to start from ##{ }_{\ell m}^{a D M}## (DM for Dark matter) and ##a_{\ell m}^P## (" ##\mathrm{P}## " for fish).
So I start from the fact that ##C_{\ell}=\operatorname{Var}\left(a_{\ell m}\right)## :

##o_{\ell}=<\left(b_{s p} a_{\ell m}^{D M}+a_{\ell m}^P\right)^2>##

If we expand, we have: ##o_{\ell}=<b_{s p}^2\left(a_{\ell m}^{D M}\right)^2+2 b_{s p} a_{\ell m}^{D M}+\left(a_{\ell m}^P\right)^2>##

##o_{\ell}=b_{s p}^2 C_{\ell}^{D M}+2 b_{s p}<a_{\ell m}^{D M}><a_{\ell m}^P>+<\left(a_{\ell m}^P\right)^2>##

##=b_{s p}^2 C_{\ell}^{D M}+<\left(a_{\ell m}^P\right)^2>##

because we have ##<a_{\ell_m}^{D M}>=0##

The problem comes from the term ##<\left(a_{\ell m}^P\right)^2>## : I don't know how to justify that this term is equal to ##\frac{1}{\bar{n}}##

Indeed, if ##B_{s p}## is a fish noise, we should have, to make the correspondence, ##B_{s p}=<\left(a_{\ell m}^P\right)^2>-<## ##a_{\ell m}^P>2## which is different from: ##B_{s p}=<\left(a_{\ell m}^P\right)^2>=\operatorname{Var}\left(a_{\ell m}^P\right)##.

How to obtain the quantity ##B_{s p}## which seems a priori equal to ##\frac{1}{\bar{n}}## ?

If ##B_{s p}## is equal to ##<\left(a_{\ell m}^P\right)^2>##, how to make the link with a variance since a Poisson law is not centered ( I mean ##<a_{\ell m}^P>\neq 0## ?
 
Last edited:
Astronomy news on Phys.org
There is a typo showed in attachment : the factor "2" is acutally an exponent in ##<a_{\ell m}^P>^2##.
 

Attachments

  • Capture d’écran 2022-12-27 à 09.05.43.png
    Capture d’écran 2022-12-27 à 09.05.43.png
    10.3 KB · Views: 122
Also (sorry), the initial quantity at the beginning ( ##o_{\ell}##) is simply the total signal ##C_\ell## :

##o_{\ell}=b_{s p}^2 C_{\ell}^{D M}+B_{s p}##

is equal to :

##C_{\ell}=b_{s p}^2 C_{\ell}^{D M}+B_{s p}##
 
Some 8 years ago I posted some experiments using 2 Software Defined Radios slaved to a common clock. The idea was measure small thermal noise by making correlation measurements between the IQ samples from each radio. This is a project that has kinda smoldered in the background where I've made progress in fits and starts. Since most (all?) RA signals are small thermal signals it seemed like the technique should be a natural approach. A recent thread discussing the feasibility of using SDRs to...