A Expression of Shot noise when expanding ##a_{\ell m}## coefficients

Click For Summary
The discussion focuses on deriving the expression for the quantity o_ℓ in the context of dark matter and Poisson noise. The proposed formula is o_ℓ = b_sp² C_ℓ^{DM} + B_sp, where B_sp represents the Poisson noise defined as B_sp = 1/𝑛̄. The expansion of o_ℓ leads to the conclusion that the term <(a_ℓm^P)²> must be justified as equal to 1/𝑛̄, raising questions about its relationship to variance. Clarification is needed on how B_sp relates to the variance of a non-centered Poisson distribution, given that <a_ℓm^P> does not equal zero. Ultimately, the total signal C_ℓ is expressed as C_ℓ = b_sp² C_ℓ^{DM} + B_sp.
fab13
Messages
300
Reaction score
7
TL;DR
I would like to prove that Shot noise follows a Poisson distribution.
I would like to arrive at the following expression for the quantity ##o_{\ell}## ( with "DM" for Dark Matter ):

##o_{\ell}=b_{s p}^2 C_{\ell}^{D M}+B_{s p}##

with Poisson noise ##B_{s p}=\frac{1}{\bar{n}}(\bar{n}## being the average number of galaxies observed). the index "sp" is for spectro. I think for now that ##B_{s p}## is the variance of a Poisson noise but see the following below to really confirm: To arrive at this same expression, I would like to start from ##{ }_{\ell m}^{a D M}## (DM for Dark matter) and ##a_{\ell m}^P## (" ##\mathrm{P}## " for fish).
So I start from the fact that ##C_{\ell}=\operatorname{Var}\left(a_{\ell m}\right)## :

##o_{\ell}=<\left(b_{s p} a_{\ell m}^{D M}+a_{\ell m}^P\right)^2>##

If we expand, we have: ##o_{\ell}=<b_{s p}^2\left(a_{\ell m}^{D M}\right)^2+2 b_{s p} a_{\ell m}^{D M}+\left(a_{\ell m}^P\right)^2>##

##o_{\ell}=b_{s p}^2 C_{\ell}^{D M}+2 b_{s p}<a_{\ell m}^{D M}><a_{\ell m}^P>+<\left(a_{\ell m}^P\right)^2>##

##=b_{s p}^2 C_{\ell}^{D M}+<\left(a_{\ell m}^P\right)^2>##

because we have ##<a_{\ell_m}^{D M}>=0##

The problem comes from the term ##<\left(a_{\ell m}^P\right)^2>## : I don't know how to justify that this term is equal to ##\frac{1}{\bar{n}}##

Indeed, if ##B_{s p}## is a fish noise, we should have, to make the correspondence, ##B_{s p}=<\left(a_{\ell m}^P\right)^2>-<## ##a_{\ell m}^P>2## which is different from: ##B_{s p}=<\left(a_{\ell m}^P\right)^2>=\operatorname{Var}\left(a_{\ell m}^P\right)##.

How to obtain the quantity ##B_{s p}## which seems a priori equal to ##\frac{1}{\bar{n}}## ?

If ##B_{s p}## is equal to ##<\left(a_{\ell m}^P\right)^2>##, how to make the link with a variance since a Poisson law is not centered ( I mean ##<a_{\ell m}^P>\neq 0## ?
 
Last edited:
Astronomy news on Phys.org
There is a typo showed in attachment : the factor "2" is acutally an exponent in ##<a_{\ell m}^P>^2##.
 

Attachments

  • Capture d’écran 2022-12-27 à 09.05.43.png
    Capture d’écran 2022-12-27 à 09.05.43.png
    10.3 KB · Views: 124
Also (sorry), the initial quantity at the beginning ( ##o_{\ell}##) is simply the total signal ##C_\ell## :

##o_{\ell}=b_{s p}^2 C_{\ell}^{D M}+B_{s p}##

is equal to :

##C_{\ell}=b_{s p}^2 C_{\ell}^{D M}+B_{s p}##
 
"Pop III stars are thought to be composed entirely of helium and hydrogen with trace amounts of lithium, the ingredients left over after the Big Bang. They formed early on, around 200 million years after the universe began. These stars are extremely rare because they died out long ago, although scientists have hoped that the faint light from these distant, ancient objects would be detectable. Previous Population III candidates have been ruled out because they didn't meet the three main...

Similar threads

  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
36
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
9
Views
2K
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K