- 22,169
- 3,328
So, g is uniform continuous if
\forall \epsilon >0: \exists \delta: \forall x,y: d(x,y)<\delta~\Rightarrow d(f(x),f(y))<\epsilon
So, g is not uniform continuous if there exists an \epsilon >0 such that
\forall \delta: \exists x,y: d(x,y)<\delta~\text{and}~d(f(x),f(y))\geq \epsilon
Now, take \delta=1/n, then
\exists x_n,y_n: d(x_n,y_n)<1/n~\text{and}~d(f(x),f(y))\geq \epsilon
This gives us the desired sequences (x_n) and (y_n) such that d(x_n,y_n)-->0 and d(f(x_n),f(y_n)) does not converge to 0.
\forall \epsilon >0: \exists \delta: \forall x,y: d(x,y)<\delta~\Rightarrow d(f(x),f(y))<\epsilon
So, g is not uniform continuous if there exists an \epsilon >0 such that
\forall \delta: \exists x,y: d(x,y)<\delta~\text{and}~d(f(x),f(y))\geq \epsilon
Now, take \delta=1/n, then
\exists x_n,y_n: d(x_n,y_n)<1/n~\text{and}~d(f(x),f(y))\geq \epsilon
This gives us the desired sequences (x_n) and (y_n) such that d(x_n,y_n)-->0 and d(f(x_n),f(y_n)) does not converge to 0.