Extreme Value Theorem: Maximum Area of Rectangle

Click For Summary
The discussion focuses on applying the Extreme Value Theorem (EVT) to find the maximum area of a rectangle with a fixed perimeter P. The area function A(w) is derived from the perimeter equation, leading to the conclusion that the maximum area occurs when both width and length equal P/4, forming a square. The interval [0, P/2] is established based on the constraints of the perimeter equation, ensuring that width cannot exceed P/2. The EVT guarantees that a continuous function on a closed interval attains its maximum and minimum, which in this case confirms the maximum area occurs at P/4. Understanding these concepts clarifies the application of EVT in solving the problem effectively.
tmlrlz
Messages
28
Reaction score
0

Homework Statement


This problem had been previously posted, however i have specific questions about it and don't feel that it was completely answered for it did not explain how you use the extreme value theorem in the problem and specifically, HOW DO YOU GET THE INTERVAL [a,b], The answer has the interval [0,P/2] but i don't understand why.
"Fix a positive number P. Let R denote the set of all rectangles with perimeter P. Prove that there is a member of R that has maximum area. What are the dimensions of the rectangle of maximum area? HINT: Express the area of an arbitrary element of R as a function of the length of one of the sides."
*Also i didn't think that replying on the original thread would be productive because i realized that it had been posted well over 2 years ago and i didn't think i would get a response lol


Homework Equations



P = 2l + 2w → l = (P-2w)/2
A = lw → A(w) = w((P-2w)/2)

The Attempt at a Solution


Let w rep the width
Let l rep the length
A(w) = w((P-2w)/2) = (Pw - 2w2)/2
First Derivative: A'(w) = (P - 4w)/2
Find where A'(w) = 0 which (i guess) means either a max or a min
0 = (P - 4w)/2 → P/2 -2w → 2w = P/2 → w = P/4
Using w we can find l :
l = (P - 2(P/4))/2 = P/4
Therefore the maximum area the rectangle can be is a square of dimensions P/4 x P/4.
However i did not use the Extreme Value Theorem anywhere in this answer! For some reason the answer page says that the interval is w\in [0,P/2], did not take the derivative of A, had A = -w2 + Pw/2 then completing the square to get:
A = -(w - P/4)2 + P2/16
From that they determined that w = P/4 (I don't know how they did that)

Please help me answer this question using Extreme Value Theorem and explaining how you obtain the interval as being [0, P/2] (Also can it be other values or does it have to be this interval) THANK YOU!
 
Physics news on Phys.org
You did use the EVT, although you didn't realize it. When you write, "Find where A'(w) = 0 which (i guess) means either a max or a min," you are implicitly using EVT.

The Extreme Value Theorem says, simply, that a continuous function on a closed, bounded interval attains both its maximum and its minimum at least once each inside of the interval.

Consider what values w can realistically take in the equation P = 2l + 2w. Can w ever be greater than P/2? If l = 0, then what is w? If l = P/2, then what is w? That gives you the possible interval for your Area as a function of w.
 
I looked at the problem again and realized that if you were to graph the function then you would realize that it was a parabola facing downwards. Then you realize as well that the area of a rectangle and the perimeter of a rectangle cannot be less than zero, they must be positive, which means that there is a maximum in the interval where A(x) = 0 which is at 0 and P/2 so between those two values for w there will be a maximum which occurs at P/4 and resulting in a length of P/4. Thank You!
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 18 ·
Replies
18
Views
3K
Replies
2
Views
1K
Replies
4
Views
2K
  • · Replies 25 ·
Replies
25
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
7
Views
2K
Replies
1
Views
3K