- #1
chwala
Gold Member
- 2,709
- 375
- Homework Statement
- if## f(x)= x^3+ax^2+bx+c## and the roots of f(x) are ##1, k, k+1##
when ##f(x)## is divided by ##x-2## the remainder is ##20##.
show that ##k^2-3k-18=0##
- Relevant Equations
- factor/remainder theorem
##0=1+a+b+c##
##20=8+4a+2b+c##
it follows that,
##13=3a+b##
and,
##0=k^3+ak^2+bk+c##...1
##0=(k+1)^3+a(k+1)^2+(k+1)b+c##...2
subtracting 1 and 2,
##3k^2+k(3+2a)+14-2a=0##
##20=8+4a+2b+c##
it follows that,
##13=3a+b##
and,
##0=k^3+ak^2+bk+c##...1
##0=(k+1)^3+a(k+1)^2+(k+1)b+c##...2
subtracting 1 and 2,
##3k^2+k(3+2a)+14-2a=0##