Factoring Matrices with Elementary Row Operations

Click For Summary

Discussion Overview

The discussion revolves around the process of factoring a matrix using elementary row operations, specifically focusing on the matrix A = [[4, -1], [3, -1]]. Participants explore different sequences of elementary matrices and express confusion regarding discrepancies between their results and those presented in a study guide.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Homework-related

Main Points Raised

  • One participant outlines their steps in performing row operations on matrix A, resulting in a sequence of elementary matrices E1, E2, E3, and E4, and expresses confusion about a discrepancy with the book's answer.
  • Another participant suggests that the row reduction process should avoid adding or subtracting fractions, implying a preference for a different method that focuses on achieving a leading 1 without division.
  • Some participants note that the steps shown in the PDF are correct, but they do not agree on the sequence of operations used to arrive at the final matrix.
  • There is mention of the possibility that the sequence of operations is not unique, which is acknowledged by one participant.
  • Participants discuss the potential for shortening the process by using different row operations, indicating that alternative methods may yield the same result with fewer steps.

Areas of Agreement / Disagreement

Participants generally do not reach consensus on the correct sequence of elementary matrices, with multiple competing views on the approach to take. There is acknowledgment of differing methods and the potential for non-uniqueness in the sequences used.

Contextual Notes

Participants express uncertainty regarding the correctness of their individual sequences and the calculations of inverses, as well as the implications of using different row operations. There are unresolved questions about the specific steps taken in the PDF versus those proposed by participants.

cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
TL;DR
I am working on reviewing some Linear Algebra for a Graduate course in the Spring. I thought I did it correctly when I finished. But I looked in the book a different answer. I used my calculator to check the book answer and gives the correct matrix.
Dear Everybody,

I have some trouble with this problem: Finding a sequence of elementary matrix for this matrix A.

Let ##A=\begin{bmatrix} 4 & -1 \\ 3& -1\end{bmatrix}##. I first used the ##\frac{1}{4}R1##-> ##R1##. So the ##E_1=\begin{bmatrix} \frac{1}{4} & 0 \\ 0& 1\end{bmatrix}##. So the matrix ##A= \begin{bmatrix}1 & \frac{-1}{4} \\ 3& -1\end{bmatrix}## we can use ##-3R1+R2->R2##. ##A''= \begin{bmatrix}1 & \frac{-1}{4} \\ 0& \frac{-1}{4}\end{bmatrix}## and ##E_2=\begin{bmatrix} 1 & 0 \\ -3& 1\end{bmatrix}##. We multiply ##4R2->R2##,##A'''= \begin{bmatrix} 1 & \frac{-1}{4} \\ 0& 1\end{bmatrix}## and ##E_3=\begin{bmatrix} 1 & 0 \\ 0& 4\end{bmatrix}##. Then we multiply 1/4 to row 2 and add to row 1,##A''''= \begin{bmatrix}1 & 0 \\ 0& 1\end{bmatrix}## and ##E_4=\begin{bmatrix} 1 & \frac{1}{4} \\ 0& 1\end{bmatrix}##. So ##A={E_1}^{-1}{E_2}^{-1}{E_3}^{-1}{E_4}^{-1}##. But in the book's answer key, it said that ##A={E_2}^{-1}{E_3}^{-1}{E_4}^{-1}##.

I am confused as to why the book's answer is different from mine. I understand that the sequence is not unique. Here is the study guide's answer as well.
 

Attachments

Physics news on Phys.org
The pdf shows that row 1 doesn’t have a 4. Are you looking at the right solution?

When we did row reduction in Linear Algebra, we were taught to avoid adding/ subtracting fractions if at all possible so the notion of dividing by 4 to get a 1 in that row would not be considered. Instead we would add / subtract the rows to get a 1 meaning we’d go for the -1 column.
 
  • Like
Likes   Reactions: cbarker1
jedishrfu said:
The pdf shows that row 1 doesn’t have a 4. Are you looking at the right solution?
The PDF shows the resulting matrix after the row operation has been performed. The steps shown in the PDF are correct.

cbarker1 said:
So ##A={E_1}^{-1}{E_2}^{-1}{E_3}^{-1}{E_4}^{-1}##. But in the book's answer key, it said that ##A={E_2}^{-1}{E_3}^{-1}{E_4}^{-1}##.
I haven't taken the time to calculate all of the above inverses. Does the product you show come out to A? If so, then your work is correct, albeit slightly longer than what is shown in the PDF.
cbarker1 said:
I am confused as to why the book's answer is different from mine. I understand that the sequence is not unique. Here is the study guide's answer as well.
They used some different steps. You could have shortened your work a bit in step 3 by -1/4R2 + R1 --> R1, instead of what you did.
 
  • Like
Likes   Reactions: sysprog and cbarker1
Mark44 said:
The PDF shows the resulting matrix after the row operation has been performed. The steps shown in the PDF are correct.I haven't taken the time to calculate all of the above inverses. Does the product you show come out to A? If so, then your work is correct, albeit slightly longer than what is shown in the PDF.

They used some different steps. You could have shortened your work a bit in step 3 by -1/4R2 + R1 --> R1, instead of what you did.
I checked with my calculator. My sequence is the same as the matrix given.
 
cbarker1 said:
I checked with my calculator. My sequence is the same as the matrix given.
Then the difference is just that you used some different steps.
 
  • Like
Likes   Reactions: jedishrfu and cbarker1

Similar threads

  • · Replies 33 ·
2
Replies
33
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 11 ·
Replies
11
Views
6K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K