I Factoring Matrices with Elementary Row Operations

AI Thread Summary
The discussion revolves around finding a sequence of elementary matrices for the matrix A = [[4, -1], [3, -1]]. The original poster's method involves multiple row operations, leading to their conclusion that A can be expressed as A = E1^(-1)E2^(-1)E3^(-1)E4^(-1). However, the book's answer suggests a different sequence: A = E2^(-1)E3^(-1)E4^(-1), which causes confusion. Participants note that the sequence of operations is not unique and that the steps taken can vary, with one suggesting a more efficient approach. Ultimately, the original poster confirms that their calculations align with the matrix A, indicating their method is valid despite being longer.
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
TL;DR Summary
I am working on reviewing some Linear Algebra for a Graduate course in the Spring. I thought I did it correctly when I finished. But I looked in the book a different answer. I used my calculator to check the book answer and gives the correct matrix.
Dear Everybody,

I have some trouble with this problem: Finding a sequence of elementary matrix for this matrix A.

Let ##A=\begin{bmatrix} 4 & -1 \\ 3& -1\end{bmatrix}##. I first used the ##\frac{1}{4}R1##-> ##R1##. So the ##E_1=\begin{bmatrix} \frac{1}{4} & 0 \\ 0& 1\end{bmatrix}##. So the matrix ##A= \begin{bmatrix}1 & \frac{-1}{4} \\ 3& -1\end{bmatrix}## we can use ##-3R1+R2->R2##. ##A''= \begin{bmatrix}1 & \frac{-1}{4} \\ 0& \frac{-1}{4}\end{bmatrix}## and ##E_2=\begin{bmatrix} 1 & 0 \\ -3& 1\end{bmatrix}##. We multiply ##4R2->R2##,##A'''= \begin{bmatrix} 1 & \frac{-1}{4} \\ 0& 1\end{bmatrix}## and ##E_3=\begin{bmatrix} 1 & 0 \\ 0& 4\end{bmatrix}##. Then we multiply 1/4 to row 2 and add to row 1,##A''''= \begin{bmatrix}1 & 0 \\ 0& 1\end{bmatrix}## and ##E_4=\begin{bmatrix} 1 & \frac{1}{4} \\ 0& 1\end{bmatrix}##. So ##A={E_1}^{-1}{E_2}^{-1}{E_3}^{-1}{E_4}^{-1}##. But in the book's answer key, it said that ##A={E_2}^{-1}{E_3}^{-1}{E_4}^{-1}##.

I am confused as to why the book's answer is different from mine. I understand that the sequence is not unique. Here is the study guide's answer as well.
 

Attachments

Mathematics news on Phys.org
The pdf shows that row 1 doesn’t have a 4. Are you looking at the right solution?

When we did row reduction in Linear Algebra, we were taught to avoid adding/ subtracting fractions if at all possible so the notion of dividing by 4 to get a 1 in that row would not be considered. Instead we would add / subtract the rows to get a 1 meaning we’d go for the -1 column.
 
jedishrfu said:
The pdf shows that row 1 doesn’t have a 4. Are you looking at the right solution?
The PDF shows the resulting matrix after the row operation has been performed. The steps shown in the PDF are correct.

cbarker1 said:
So ##A={E_1}^{-1}{E_2}^{-1}{E_3}^{-1}{E_4}^{-1}##. But in the book's answer key, it said that ##A={E_2}^{-1}{E_3}^{-1}{E_4}^{-1}##.
I haven't taken the time to calculate all of the above inverses. Does the product you show come out to A? If so, then your work is correct, albeit slightly longer than what is shown in the PDF.
cbarker1 said:
I am confused as to why the book's answer is different from mine. I understand that the sequence is not unique. Here is the study guide's answer as well.
They used some different steps. You could have shortened your work a bit in step 3 by -1/4R2 + R1 --> R1, instead of what you did.
 
  • Like
Likes sysprog and cbarker1
Mark44 said:
The PDF shows the resulting matrix after the row operation has been performed. The steps shown in the PDF are correct.I haven't taken the time to calculate all of the above inverses. Does the product you show come out to A? If so, then your work is correct, albeit slightly longer than what is shown in the PDF.

They used some different steps. You could have shortened your work a bit in step 3 by -1/4R2 + R1 --> R1, instead of what you did.
I checked with my calculator. My sequence is the same as the matrix given.
 
cbarker1 said:
I checked with my calculator. My sequence is the same as the matrix given.
Then the difference is just that you used some different steps.
 
  • Like
Likes jedishrfu and cbarker1
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top