When calculating the mean lifetime of an electron in a solid under the influence of a perturbation (for example electron-phonon interaction) we often apply Fermi's golden rule but the rate always has to be weighted by appropriate distribution functions (for example fermi functions). These take into account wether a given state is occupied of unoccupied and hence a candidate for the transition. Why do we need an "additional" probability for an unoccupied state? I mean, in the context of the Hilbert space the transition of a many-particle state to another isn't different from transitions between one particle states fundamentally. Isn't the probability already contained in the transition rate? In other words: The golden rule states: Given that the electron was in the state A (probability p(A)=1) what is the probability to find it in a continuum of states close to B at a time t? The rate is the time derivative of that probability. Isn't it redundant then to introduce a probability (1-P(B))? I hope I expressed myself clearly.(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# A Fermis golden rule and transition rates

Have something to add?

Draft saved
Draft deleted

Loading...

Similar Threads for Fermis golden rule |
---|

I Doubt about partition functions in QFT and in stat Mechanics |

A Fermi and Bose gas in statistical mechanics |

I Fermi gas at the absolute zero T |

I Fermi Pressure |

I Fermi's golden rule derivation |

**Physics Forums | Science Articles, Homework Help, Discussion**