Feynman diagram for ##\mu^+\mu^-## production in ##p\bar{p}## reaction

Click For Summary
SUMMARY

The discussion centers on the Feynman diagram for muon-antimuon (##\mu^+\mu^-##) production in proton-antiproton (##p\bar{p}##) collisions. The primary focus is on the interaction of quarks during the collision, specifically how two quarks combine to produce a virtual photon that creates the muon pair. The remaining quarks, which cannot exist independently, are theorized to form mesons, with the likelihood of producing either two ##\pi^0## mesons or a ##\pi^+\pi^-## pair being discussed. The conversation highlights the importance of helicity conservation at high energies in these processes.

PREREQUISITES
  • Understanding of Feynman diagrams and particle interactions
  • Knowledge of quark composition in protons and antiprotons
  • Familiarity with meson production and decay processes
  • Basic grasp of helicity conservation in high-energy physics
NEXT STEPS
  • Study the derivation of angular distributions in particle physics, focusing on ##d^j_{m'm}## rotation matrix elements
  • Research the properties and production mechanisms of mesons, particularly ##\pi^0## and ##\pi^+##
  • Explore the role of virtual photons in particle interactions and their implications in high-energy collisions
  • Examine the conservation laws in particle physics, especially helicity and charge conservation
USEFUL FOR

This discussion is beneficial for particle physicists, students studying high-energy physics, and anyone interested in the mechanisms of particle production in collisions.

Nirmal Padwal
Messages
41
Reaction score
2
Homework Statement
Remembering that helicity is conserved at high energies,
a) Draw a typical diagram for ##\mu^+ \mu^-##-pair production, with an invariant mass around 30 GeV, in unpolarised ##p\bar{p}## collisions.
b) Derive an expression for the angular distribution (with respect to the ##\bar{p}## direction) of ##\mu^+## in the ##\mu^+\mu^-##, centre-of-mass system.
(Hint: You will need to look up the appropriate ##d^j_{m'm}## rotation matrix elements)
Relevant Equations
1) ##d^1_{11} = \frac{1}{2}(1+\cos\theta)##
2) ##d^1_{-11} = \frac{1}{2}(1-\cos\theta)##
I was able to solve b) but I am confused for a). I understand that in the proton-antiproton collision, only two quarks (one from proton and other from anti-proton) can be combined to get a virtual photon that in turn creates muon and anti-muon. I don't understand what would happen to the other quarks? Since single quarks cannot exist independently, I think maybe they combine to form mesons. Is that correct? But which meson? If I take ##u## and ##\bar{u}## from ##p## and ##\bar{p}## respectively (please check the feynman diagram below), I am still left with ##u,d,\bar{u},\bar{d}##. Do they combine to give two ##\pi^0##s or ##\pi^+\pi^-##?
pp collision feynman diag.jpeg
 
Physics news on Phys.org
Nirmal Padwal said:
Homework Statement:: Remembering that helicity is conserved at high energies,
a) Draw a typical diagram for ##\mu^+ \mu^-##-pair production, with an invariant mass around 30 GeV, in unpolarised ##p\bar{p}## collisions.
b) Derive an expression for the angular distribution (with respect to the ##\bar{p}## direction) of ##\mu^+## in the ##\mu^+\mu^-##, centre-of-mass system.
(Hint: You will need to look up the appropriate ##d^j_{m'm}## rotation matrix elements)
Relevant Equations:: 1) ##d^1_{11} = \frac{1}{2}(1+\cos\theta)##
2) ##d^1_{-11} = \frac{1}{2}(1-\cos\theta)##

I was able to solve b) but I am confused for a). I understand that in the proton-antiproton collision, only two quarks (one from proton and other from anti-proton) can be combined to get a virtual photon that in turn creates muon and anti-muon. I don't understand what would happen to the other quarks? Since single quarks cannot exist independently, I think maybe they combine to form mesons. Is that correct? But which meson? If I take ##u## and ##\bar{u}## from ##p## and ##\bar{p}## respectively (please check the feynman diagram below), I am still left with ##u,d,\bar{u},\bar{d}##. Do they combine to give two ##\pi^0##s or ##\pi^+\pi^-##?
View attachment 323288
It's not so much a matter of which happens, it's a matter of which is more likely. I haven't checked the tables but I would suspect that both versions are about equally probable

-Dan
 

Similar threads

Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
6K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 14 ·
Replies
14
Views
9K
Replies
8
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
4K