Feynman diagram for ##\mu^+\mu^-## production in ##p\bar{p}## reaction

Nirmal Padwal
Messages
41
Reaction score
2
Homework Statement
Remembering that helicity is conserved at high energies,
a) Draw a typical diagram for ##\mu^+ \mu^-##-pair production, with an invariant mass around 30 GeV, in unpolarised ##p\bar{p}## collisions.
b) Derive an expression for the angular distribution (with respect to the ##\bar{p}## direction) of ##\mu^+## in the ##\mu^+\mu^-##, centre-of-mass system.
(Hint: You will need to look up the appropriate ##d^j_{m'm}## rotation matrix elements)
Relevant Equations
1) ##d^1_{11} = \frac{1}{2}(1+\cos\theta)##
2) ##d^1_{-11} = \frac{1}{2}(1-\cos\theta)##
I was able to solve b) but I am confused for a). I understand that in the proton-antiproton collision, only two quarks (one from proton and other from anti-proton) can be combined to get a virtual photon that in turn creates muon and anti-muon. I don't understand what would happen to the other quarks? Since single quarks cannot exist independently, I think maybe they combine to form mesons. Is that correct? But which meson? If I take ##u## and ##\bar{u}## from ##p## and ##\bar{p}## respectively (please check the feynman diagram below), I am still left with ##u,d,\bar{u},\bar{d}##. Do they combine to give two ##\pi^0##s or ##\pi^+\pi^-##?
pp collision feynman diag.jpeg
 
Physics news on Phys.org
Nirmal Padwal said:
Homework Statement:: Remembering that helicity is conserved at high energies,
a) Draw a typical diagram for ##\mu^+ \mu^-##-pair production, with an invariant mass around 30 GeV, in unpolarised ##p\bar{p}## collisions.
b) Derive an expression for the angular distribution (with respect to the ##\bar{p}## direction) of ##\mu^+## in the ##\mu^+\mu^-##, centre-of-mass system.
(Hint: You will need to look up the appropriate ##d^j_{m'm}## rotation matrix elements)
Relevant Equations:: 1) ##d^1_{11} = \frac{1}{2}(1+\cos\theta)##
2) ##d^1_{-11} = \frac{1}{2}(1-\cos\theta)##

I was able to solve b) but I am confused for a). I understand that in the proton-antiproton collision, only two quarks (one from proton and other from anti-proton) can be combined to get a virtual photon that in turn creates muon and anti-muon. I don't understand what would happen to the other quarks? Since single quarks cannot exist independently, I think maybe they combine to form mesons. Is that correct? But which meson? If I take ##u## and ##\bar{u}## from ##p## and ##\bar{p}## respectively (please check the feynman diagram below), I am still left with ##u,d,\bar{u},\bar{d}##. Do they combine to give two ##\pi^0##s or ##\pi^+\pi^-##?
View attachment 323288
It's not so much a matter of which happens, it's a matter of which is more likely. I haven't checked the tables but I would suspect that both versions are about equally probable

-Dan
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top