(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Coulomb force between line charges: a rod of length l1 with line charge density λ1 and a rod of length l2 with line charge density λ2 lie on the x axis. Their ends are separated by a distance D as shown in the figure.

(a) What is the force F between these charges?

diagram: http://ocw.mit.edu/NR/rdonlyres/Physics/8-022Fall-2004/3A772032-6B74-4D2D-A550-8F0ECFECEDBC/0/pset1.pdf [Broken]

#7

2. Relevant equations

E = [tex]\frac{1}{4\pi\epsilon}[/tex][tex]\int\frac{dq}{r^2}[/tex]

F = [tex]\int E dq[/tex]

3. The attempt at a solution

So, first I decided to find the field at a point a distance D from the end of line 1. Using the standard x coordinate system, I placed line 1 such that its endpoints are 0, [tex]l_{1}[/tex].

E = [tex]\frac{1}{4\pi\epsilon}[/tex][tex]\int\frac{dq}{r^2}[/tex]

Limits of integration being (0,

Using this and dq = [tex]dl_{1}[/tex][tex]\lambda_{1}[/tex], all I need to do is find a function for r in terms of l, which is the distance from 0. Which would be ([tex]l_{1}[/tex] + D) - l.

I renamed ([tex]l_{1}[/tex] + D) as the variable a to make the integration simpler. So now I have:

E = [tex]\frac{\lambda_{1}}{4\pi\epsilon}[/tex][tex]\int \frac{dl}{(a - l)^2}[/tex]

which is just [tex]\frac{\lambda_{1}}{4\pi\epsilon} * [/tex][tex]\frac{1}{a-l_{1}}[/tex]

and because a = d + [tex]l_{1}[/tex]

I get the E Field being E = [tex]\frac{\lambda_{1}}{4d\pi\epsilon}[/tex]

Is this correct so far? Clearly my success on the second part depends on that because all I have to do is just integrate the field over the infinitesimal segments of charge over the second line's length yes? And to find that distance d as a function of l it's just ( l - length 1), where l is the distance from the 0 point. I'm just kind of shaky on the first part, finding the field, that's all.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Field Due to Continuous Distribution of Charge

**Physics Forums | Science Articles, Homework Help, Discussion**