MHB Field Extensions - Lovett, Theorem 7.1.10 .... ....

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Field Theorem
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Abstract Algebra: Structures and Applications" by Stephen Lovett ...

I am currently focused on Chapter 7: Field Extensions ... ...

I need help with an aspect of the proof of Theorem 7.1.10 ...Theorem 7.1.10, and the start of its proof, reads as follows:
View attachment 6575In the above text from Lovett we read the following ...

" ... ... Let $$p(x)$$ be a polynomial of least degree such that $$p( \alpha ) = 0$$ ... ... "Then Lovett goes on to prove that $$p(x)$$ is irreducible in $$F[x]$$ ... ...... BUT ... I am confused by this since it is my understanding that if $$p( \alpha ) = 0$$ then $$p(x)$$ has a linear factor $$x - \alpha$$ in $$F[x]$$ and so is not irreducible ... ... ?Can someone please help clarify this issue ... ...

Peter
 
Physics news on Phys.org
If $\alpha\notin F$, $x - \alpha$ is not a polynomial in $F[x]$, so it cannot be a linear factor of $p(x)$ in $F[x]$. The condition $[F(\alpha):F] > 1$ holds if and only if $\alpha \in F$.
 
Euge said:
If $\alpha\notin F$, $x - \alpha$ is not a polynomial in $F[x]$, so it cannot be a linear factor of $p(x)$ in $F[x]$. The condition $[F(\alpha):F] > 1$ holds if and only if $\alpha \in F$.
Thanks for the help, Euge

Peter
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top