MHB Field Extensions - Lovett, Theorem 7.1.10 .... ....

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Field Theorem
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Abstract Algebra: Structures and Applications" by Stephen Lovett ...

I am currently focused on Chapter 7: Field Extensions ... ...

I need help with an aspect of the proof of Theorem 7.1.10 ...Theorem 7.1.10, and the start of its proof, reads as follows:
View attachment 6575In the above text from Lovett we read the following ...

" ... ... Let $$p(x)$$ be a polynomial of least degree such that $$p( \alpha ) = 0$$ ... ... "Then Lovett goes on to prove that $$p(x)$$ is irreducible in $$F[x]$$ ... ...... BUT ... I am confused by this since it is my understanding that if $$p( \alpha ) = 0$$ then $$p(x)$$ has a linear factor $$x - \alpha$$ in $$F[x]$$ and so is not irreducible ... ... ?Can someone please help clarify this issue ... ...

Peter
 
Physics news on Phys.org
If $\alpha\notin F$, $x - \alpha$ is not a polynomial in $F[x]$, so it cannot be a linear factor of $p(x)$ in $F[x]$. The condition $[F(\alpha):F] > 1$ holds if and only if $\alpha \in F$.
 
Euge said:
If $\alpha\notin F$, $x - \alpha$ is not a polynomial in $F[x]$, so it cannot be a linear factor of $p(x)$ in $F[x]$. The condition $[F(\alpha):F] > 1$ holds if and only if $\alpha \in F$.
Thanks for the help, Euge

Peter
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top