MHB Field Extensions - Remarks by Lovett - Page 326 .... ....

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Field
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading "Abstract Algebra: Structures and Applications" by Stephen Lovett ...

I am currently focused on Chapter 7: Field Extensions ... ...

I need help with some remarks of Lovett following Theorem 7.1.12 and Example 7.1.13 on page 326 ...The remarks by Lovett read as follows:
https://www.physicsforums.com/attachments/6589
In the above remarks from Lovett, we read the following:

" ... ... In the quotient ring $$K$$, this implies that $$\overline{ a(x) q(x) } = 1$$. Thus in $$K, \ a( \alpha ) q( \alpha ) = 1$$. ... ... "My question is as follows:

Can someone please explain exactly why/how $$\overline{ a(x) q(x) } = 1$$ implies that $$a( \alpha ) q( \alpha ) = 1$$ ... ... ?Help will be appreciated ...

Peter
 
Physics news on Phys.org
I can't help with your question, but out of curiosity, how are you uploading your snippets of the various literature you upload? I'm going to guess they are photocopies.

I can recommend smartphone applications which will allow you to get a clear, more definitive black/white render of your image if you are interested! Also saves the headache of using a printer, if that's what you are doing..
 
Hi Peter,

If $\overline{a(x)q(x)} = 1$, then $a(x)q(x) - 1 \in (p(x))$, so then $a(x)q(x) - 1 = f(x)p(x)$ for some $f(x)\in F[x]$. Evaluating at $\alpha$, $a(\alpha)q(\alpha) - 1 = f(\alpha)p(\alpha) = f(\alpha)(0) = 0$. Hence, $a(\alpha)q(\alpha) = 1$.
 
Joppy said:
I can't help with your question, but out of curiosity, how are you uploading your snippets of the various literature you upload? I'm going to guess they are photocopies.

I can recommend smartphone applications which will allow you to get a clear, more definitive black/white render of your image if you are interested! Also saves the headache of using a printer, if that's what you are doing..
Hi Joppy,

I just scan the relevant textbook page and the select the relevant text ... then I use IrfanView to reduce the file size and convert to PNG format ... works Ok and is not very onerous ...

Peter

- - - Updated - - -

Euge said:
Hi Peter,

If $\overline{a(x)q(x)} = 1$, then $a(x)q(x) - 1 \in (p(x))$, so then $a(x)q(x) - 1 = f(x)p(x)$ for some $f(x)\in F[x]$. Evaluating at $\alpha$, $a(\alpha)q(\alpha) - 1 = f(\alpha)p(\alpha) = f(\alpha)(0) = 0$. Hence, $a(\alpha)q(\alpha) = 1$.
oh ... of course ...

Thanks Euge ...

Peter
 
Peter said:
Hi Joppy,

I just scan the relevant textbook page and the select the relevant text ... then I use IrfanView to reduce the file size and convert to PNG format ... works Ok and is not very onerous ...

Peter

Cool, just thought id mention it. ScannerPro is an app that syncs with Dropbox and allows you to easily crop and scale your images. The most important aspect being that you get much better coloration of your images (blacker blacks, whiter whites).
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K